PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aminonitronaphthalenes as Possible High Energy Density Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As part of a series of studies evaluating the thermodynamic properties of new potential high energy materials, a series of calculations was performed on a variety of naphthalene molecules having amino and nitro groups. Calculations on seven aminonitronaphthalene molecules were performed, determining their minimum-energy geometries, vibrational frequencies, and energies. Enthalpies of formation were determined using atomization reactions, and subsequently enthalpies of combustion or decomposition were determined. Specific enthalpies of decomposition ranged from 4.1-4.8 kJ/g, while specific enthalpies of combustion ranged more widely, from 13 to almost 21 kJ/g. Some detonation properties of some of the derivatives rival those of current HEDMs.
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland OH 44115, USA
autor
  • Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland OH 44115, USA
Bibliografia
  • [1] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P, Advances in Science and Technology of Modern Energetic Materials: An Overview, J. Hazard. Mater.,2008, 151, 289-305.
  • [2] NIST Chemistry Webbook, http://webbook.nist.gov/chemistry. Accessed 7 June 2013.
  • [3] Latypov N.V., Bergman J., Langlet, A. Wellmar U., Bemm U., Synthesis and Reactions of 1,1-Diamino-2,2-dinitroethylene, Tetrahedron, 1998, 54, 1152-36.
  • [4] Evers J., Klapötke T.M., Meyer P., Öhlinger G., Welch J., α- and β-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K, Inorg. Chem., 2006, 45, 4996-5007.
  • [5] Crawford M.-J., Evers J., Göbel M., Klapötke T.M., Meyer P., Öhlinger G., Welch J.M., γ-FOX-7: Structure of a High Energy Density Material Immediately Prior to Decomposition, Propellants Explos. Pyrotech., 2007, 32, 478-95.
  • [6] Mathews K.Y., Ball D.W., New Potential High Energy Materials. High-Level Calculations on the Properties of Aminonitromethanes, J. Mol. Struct. – THEOCHEM, 2008, 868, 78-81.
  • [7] Mathews K.Y., Ball D.W., Computational Study of the Structures and Properties of Aminonitroethane Molecules, J. Mol. Struct. – THEOCHEM, 2009, 902, 15-20.
  • [8] Mathews K.Y., Ball D.W., Calculated Thermochemistry of Aminonitroacetylene: A New High Energy Material? J. Phys. Chem. A, 2009, 113, 4855-7.
  • [9] Halstead J.M., Whittaker J.N., Ball D.W., Aminonitrocyclopropanes as Possible High-energy Materials. Quantum Chemical Calculations, Propellants Explos. Pyrotech., 2012, 37, 498-501.
  • [10] Wilbrand J., Annal. Chemie Pharmacie, Leipzig & Heidelberg, 1863, 128, 178-179.
  • [11] Akhavan J., The Chemistry of Explosives, 2nd ed., Royal Society of Chemistry, London, 2004.
  • [12] Albright D., South Africa and the Affordable Bomb, Bull. Atom. Sci. 1994, 50, 37-47.
  • [13] Felhoen C., Explosive Compound, UK Pat. Appl. 7902266, 1879.
  • [14] Stebbins J.H., Improvement in Coloring Matters Obtained from Cresol, US Patent 221114 et seq., 1879.
  • [15] Krug W.H., Blomen J.E., The Commercial Preparation of Nitronaphthalenes, J. Amer. Chem. Soc., 1897, 19, 532-8.
  • [16] CRC Handbook of Chemistry and Physics, (Haynes W.N., Ed.), 94th ed., CRC Press, Boca Raton, FL, 2013.
  • [17] Gaussian 03, Revision A.01, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Gaussian, Inc., Wallingford CT, 2003.
  • [18] Becke A.D., Density-functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648-52.
  • [19] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B, 1998, 37, 785-9.
  • [20] Hehre W.J., Ditchfield R., Pople J.A., Self-consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 1972, 56, 2257-61.
  • [21] GaussView 4.1. Gaussian, Inc., Wallingford CT, 2006.
  • [22] Kamlet M.J., Jacobs S.J., Chemistry of Detonations, I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [23] Klapötke T.M., Chemistry of High-Energy Materials, Walter de Gruyter, Berlin/New York, 2008.
  • [24] Wang G, Xiao H., Ju X., Gong X, Calculation of Detonation Velocity, Pressure, and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry, Propellants Explos. Pyrotech., 2006, 31, 361-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8d498f-a809-468d-9f25-f9bad21738a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.