PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of methylene blue from aqueous solutions with natural olive pomace modified with ultrasounds and acid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Removal of methylene blue (MB) from aqueous solution by raw olive pomace (ROP) which is a waste of industrial olive oil and olive pomace modified with ultrasounds and acid (MOP) has been investigated. It was found that the data for ROP and MOP were well fit to the Freundlich isotherm model (R2 equal to 0.864 and 0.834, respectively). As a result; it was determined that raw olive pomace can be used for the removal of methylene blue dye (KF = 10.08 mg/g(dm3/mg)1/n) and modified olive pomace had high adsorption capacity for MB (KF = 73.08 mg/g(dm3/mg)1/n).
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 25 poz. tab., rys.
Twórcy
autor
  • Department of Environmental Engineering, Nevsehir Hacı Bektas Veli University, 50300 Nevsehir, Turkey
Bibliografia
  • [1] OZDEMIR C., ODEN M.K., SAHINKAYA S., KALIPCI E., Color removal from synthetic textile wastewater by sono-Fenton process, Clean Soil Air Water, 2011, 39, 60.
  • [2] SAHINKAYA S., COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process, J. Ind. and Eng. Chem., 2013, 19 (2), 601.
  • [3] GURSES A., YALCIN M., DOGAR C., Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Manage., 2002, 22, 491.
  • [4] ROBINSON T., MCMULLAN G., MARCHANT R., NIGAM P., Remediation of dyes in textile effluent. A critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 2001, 77, 247.
  • [5] GUPTA V.K., MITTAL A., JAIN R., MATHUR M., SIKARWAR S., Adsorption of Safranin-T from waste- water using waste materials activated carbon and activated rice husks, J. Colloid Interface Sci., 2006, 303, 80.
  • [6] GURU M., VENEDIK D., MURATHAN SELEK A., Removal of trivalent chromium from water using low costnatural diatomite, J. Hazard. Mater., 2008, 160, 318.
  • [7] EREN Z., Ultrasound as a basic and auxiliary process for dye remediation: A review, J. of Environ. Manage., 2012, 104, 127.
  • [8] HAMDAOUI O., NAFFRECHOUX E., TIFOUTI L., PE´TRIER C., Effects of ultrasound on adsorption–de-sorption of p-chlorophenol on granular activated carbon, Ultrason. Sonochem., 2003, 10, 109.
  • [9] FERNANDES J.P.S., CARVALHO B.S., LUCHEZ C.V., POLITI M.J., BRANDT C.A., Optimization of the ultrasound-assisted synthesis of allyl 1-naphthyl ether using response surface methodology, Ultrason. Sonochem., 2011, 18, 489.
  • [10] PAGNANELLI F., MAINELLI S.. VEGLIO F., MICHELIS I.D., BEOLCHINI F., TORO L., Olive pomace for heavy metal removal. Adsorbent characterisation and equilibrium modelling, Acta. Metall. Slovaca, 2006, 12, 313.
  • [11] ERGUDER T.H., GUVEN E., DEMIRER G.N., Anaerobic treatment of olive oil mill wastes in batch reactors, Process Biochem., 2000, 36, 243.
  • [12] ALMEIDA C.A.P., DEBACHER N.A., DOWNS A.J., COTTET L., MELLO C.A.D., Removal of methylene blue from colored effluents by adsorption on montmorillonite clay, J. Coll. Interface Sci., 2009, 332, 46.
  • [13] ALKAN M., DEMIRBAS O., DOGAN M., Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite, Micropor. Mesopor. Mater., 2007, 101, 388.
  • [14] WEBER W., DIGIANO F., Process Dynamics in Environmental Systems, Wiley, 1st Ed., New York 1996.
  • [15] FREUNDLICH H.M.F., Over the adsorption in solution, J. Phys. Chem., 1906, 57, 385.
  • [16] FYTIANOS K., VOUDRIAS E., KOKKALIS E., Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments, Chemosphere, 2000, 40, 3.
  • [17] BANAT F., AL-ASHEH S., AL-AHMAD R., BNI-KHALID F., Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal, Bioresour. Technol., 2007, 98, 3017.
  • [18] DOGAN M., ALKAN M., TURKYILMAZ A., OZDEMIR Y., Kinetics and mechanism of removal of methylene blue by adsorption onto perlite, J. Hazard. Mater., 109, 2004, 141.
  • [19] ZHAO M., LIU P., Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder, Desalination, 2009, 249, 331.
  • [20] EL-SAYED G.O., Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber, Desalination, 2011, 272, 225.
  • [21] GARG V.K., AMITA M., KUMAR R., GUPTA R., Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dyes Pigm., 2004, 63, 243.
  • [22] DE D.S., BASU J.K., Adsorption of methylene blue onto a low cost adsorbent developed from saw dust, Ind. J. Environ. Protec., 1998, 19, 416.
  • [23] MCKAY G., RAMPRASAD G., PRATAPAMOWLI P., Equilibrium studies for the adsorption of dyestuffs from aqueous solution by low-cost materials, Water Air Soil Pollut., 1986, 29, 273.
  • [24] OYELUDE E.O., OWUSU U.R., Adsorption of methylene blue from aqueous solution using acid modified Clotropis procer leaf powder, J. Appl. Sci. Environ. Sanit., 2011, 6, 477.
  • [25] SONAWANE S.H., CHAUDHARI P.L., GHODKE S.A., PARANDE M.G., BHANDARI V.M., MISHRA S., KULKARNI R.D., Ultrasound assisted synthesis of polyacrylic acid–nanoclay nanocomposite and its application in sonosorption studies of malachite green dye, Ultrason. Sonochem., 2009, 16, 351.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bc0b809c-9e2d-4e81-94fc-88c9f00e496d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.