Identyfikatory
Warianty tytułu
Results of experimental study and hydrogeochemical modeling of interactions between acid gases (CO2 and H2S) and geological environment : case study of the Upper Silesian Coal Basin
Języki publikacji
Abstrakty
Abatement of greenhouse effect, enhanced oil and gas recovery, and energized fluid fracturing technologies require thorough studies on acid gas impact on geologic formations. This contribution based on laboratory experiments coupled with hydrogeochemical models, considering the impact of CO2 and H2S and their mixtures on rocks representative for the Upper Silesian Coal Basin (USCB). In our study, by means of SEM and EDX analyses, we identified significant changes in structure and composition of rock samples influenced by acid gas in autoclave experiments. Dissolution of skeletal grains was the most distinct in carbonates and chlorite, and led to porosity increase. Experimental results were used in modeling, which allowed for geochemical reactions identification, assessment of the volume of secondary minerals, and amounts of gases sequestered in 10 000 years of simulated storage. The maximum calculated mineral-trapping capacity, for the mudstone of the USCB paralic series, reached 28.2 kg CO2/m3 for CO2 injection. The Dębowiec Formation rocks were characterized by high capacity for H2S sequestration amounting to 15.5 kg H2S/m3. Results of modeling demonstrated, that in the case of geological storage of H2S, a release of significant amounts of CO2, from dissolution of primary carbonates, should be expected.
Czasopismo
Rocznik
Tom
Strony
887--892
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Geologii Stosowanej, Politechnika Śląska, ul. Akademicka 2, 44-100 Gliwice
autor
- Instytut Geologii Stosowanej, Politechnika Śląska, ul. Akademicka 2, 44-100 Gliwice
Bibliografia
- 1. BETHKE C.M. 2008 - Geochemical and biogeochemical reaction modeling. Cambridge Univ. Press., Cambridge.
- 2. HOLLOWAY S. 2005 - Underground sequestration of carbon dioxide - a viable greenhouse gas mitigation option. Energy, 30: 2318-2333.
- 3. KASZUBA J.P, JANECKY D.R. & SNOW M.G. 2003 - Carbon dioxide reaction processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. App. Geochem., 18: 1065-1080.
- 4. LABUS K. & BUJOK P 2011 - CO2 mineral sequestration mechanisms and capacity of saline aquifers of the Upper Silesian Coal Basin (Central Europe) - modeling and experimental verification. Energy, 36: 49744982.
- 5. LASAGA A.C. 1984 - Chemical kinetics of water-rock interactions. J. Geophys. Res., 89: 4009-4025.
- 6. PALANDRI J.L & KHARAKA Y.K. 2004 - A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. US Geol. Surv. Open File Rep. 2004-1068.
- 7. SINAL M.L. & LANCASTER G. 1987 - Liquid CO2 fracturing: advantages and limitations. J. Can. Petrol. Technol., 26: 26-30.
- 8. XU T., APPS J.A. & PRUESS K. 2003 - Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J. Geophys Res., 108: 2071-2084.
- 9. XU T., APPS J.A., PRUESS K. & YAMAMOTO H. 2007 - Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem. Geol., 242: 319-346.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acb8a317-f580-4e09-93a6-1431a0e909fc