PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The system for complex magnetic susceptibility measurement of nanoparticles with 3D printed carcass for integrated receive coils

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
System do pomiaru zespolonej podatności magnetycznej nanocząstek zwykonanym w technologii druku 3D karkasem zintegrowanych cewek odbiorczych
Języki publikacji
EN
Abstrakty
EN
The article concerns the research on the properties of core-shell superparamagnetic nanoparticles in the context of their use in medicine for diagnostics and therapy. The article presents a system for impedance (AC) spectroscopy of nanoparticles with a new arrangement of receive coils. A significant modification was the position of the reference coil in relation to the receive coils as well as the method of winding and routing the wires on the carcass. The 3D printing technique was used in the production of the measuring coil system. The aim of the work was to experimentally verify the developed measurement system and analyze its properties. The system tests were carried out at low frequencies ranging from 2 to 50 kHz. Complex magnetic susceptibility was measured for superparamagnetic iron oxide nanoparticles in polymer shells in a physiological saline solution. The obtained results confirmed the relevance of the concept of the measurements. In summary, the observed properties of the realized system are discussed and further directions of its development are proposed.
PL
Artykuł dotyczy badań właściwości nanocząstek superparamagnetycznych typu rdzeń-powłoka w kontekście wykorzystania ich w medycynie do diagnostyki jak i terapii. W artykule przedstawiono układ do spektroskopii impedancyjnej (AC) nanocząstek z nowym układem cewek odbiorczych. Istotną modyfikacją była pozycja cewki referencyjnej względem cewek odbiorczych jak również sposób nawijania i prowadzenia przewodów na karkasie. W realizacji układu cewek pomiarowych wykorzystana została technika druku 3D. Celem pracy była eksperymentalna weryfikacja opracowanego układu pomiarowego i analiza jego własności. Testy układu zostały przeprowadzone dla niskich częstotliwości w zakresie od 2 do 50 kHz. Pomiary zespolonej podatności magnetycznej dokonano dla nanocząstek superparamagnetycznych tlenku żelaza w otoczkach polimerowych w roztworze soli fizjologicznej. Uzyskane wyniki potwierdziły poprawność koncepcji realizacji pomiarów. W podsumowaniu omówiono zaobserwowane własności zrealizowanego układu i zaproponowano dalsze kierunki jego rozwoju.
Rocznik
Strony
4--9
Opis fizyczny
Bibliogr. 20 poz., wykr., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Division of Medical and Nuclear Electronics, Warsaw, Poland
Bibliografia
  • [1] Bogren S. et al.: Classification of Magnetic Nanoparticle Systems–Synthesis, Standardization and Analysis Methods in the NanoMag Project. International Journal of Molecular Sciences 16(9)/2015, 20308–20325 [http://doi.org/10.3390/ijms160920308].
  • [2] Graeser M. et al.: Analog receive signal processing for magnetic particle imaging. Med. Phys. 40(4)/2013, 042303 [http://doi.org/10.1118/1.4794482].
  • [3] Harabech M. et al.: The Effect of the Magnetic Nanoparticle’s Size Dependence of the Relaxation Time Constant on the Specific Loss Power of Magnetic Nanoparticle Hyperthermia. Journal of Magnetism and Magnetic Materials 426/2017, 206–210 [http://doi.org/10.1016/j.jmmm.2016.11.079].
  • [4] Hergt R. et al.: Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy. Journal of Physics Condensed Matter 18(38)/2006, S2919 [http://doi.org/10.1088/0953-8984/18/38/S26].
  • [5] Kishore K., Akbar S. A.: Evolution of Lock-In Amplifier as Portable Sensor Interface Platform: A Review. IEEE Sensors Journal 20(18)/2020, 10345–10354 [http://doi.org/10.1109/JSEN.2020.2993309].
  • [6] Ludwig F. et al.: Analysis of AC Susceptibility Spectra for the Characterization of Magnetic Nanoparticles. IEEE Transactions on Magnetics 53(11)/2017, 10– 13 [http://doi.org/10.1109/TMAG.2017.2693420].
  • [7] Mahdavi Z. et al.: Core-Shell Nanoparticles Used in Drug DeliveryMicrofluidics: A Review. RSC Advances 10(31)/2020, 18280–18295 [http://doi.org/10.1039/d0ra01032d].
  • [8] Maity D., Ganeshlenin K.: Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy, Springer Berlin Heidelberg, 2019, 299–332 [http://doi.org/10.1007/978-3-662-59596-1_7].
  • [9] Reeves D. B., Weaver J. B.: Magnetic Nanoparticle Sensing: Decoupling the Magnetization from the Excitation Field. Journal of Physics D: Applied Physics 47(4)/2013, 45002 [http://doi.org/10.1088/0022-3727/47/4/045002].
  • [10] Sandler S. E. et al.: Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry 91(22)/2019, 14159–14169 [http://doi.org/10.1021/acs.analchem.9b03518].
  • [11] Šouc J. et al.: Calibration Free Method for Measurement of the AC Magnetization Loss. Superconductor Science and Technology 18(5)/2005, 592–595 [http://doi.org/10.1088/0953-2048/18/5/003].
  • [12] Suhaimi N. S. et al.: A Resonant Type AC Magnetometer for Evaluation of Magnetic Nanoparticles. Hassan M. (eds) Intelligent Manufacturing & Mechatronics. Lecture Notes in Mechanical Engineering. Springer, Singapore 2018 [http://doi.org/10.1007/978-981-10-8788-2_9].
  • [13] Sun Y. et al.: An Improved Method for Estimating Core Size Distributions of Magnetic Nanoparticles via Magnetization Harmonics. Nanomaterials 10(9)/2020, 1–12 [http://doi.org/10.3390/nano10091623].
  • [14] Valentini M. et al.: Diffusion NMR Spectroscopy for the Characterization of the Size and Interactions of Colloidal Matter: The Case of Vesicles and Nanoparticles. Journal of the American Chemical Society 126(7)/2004, 2142–2147 [http://doi.org/10.1021/ja037247r].
  • [15] Vallejo-Fernandez G. et al.: Mechanisms of Hyperthermia in Magnetic Nanoparticles. Journal of Physics D: Applied Physics 46(31)/2013 [http://doi.org/10.1088/0022-3727/46/31/312001].
  • [16] Van De Loosdrecht M. M. et al.: A Novel Characterization Technique for Superparamagnetic Iron Oxide Nanoparticles: The Superparamagnetic Quantifier, Compared with Magnetic Particle Spectroscopy. Review of Scientific Instruments 90(2)/2019 [http://doi.org/10.1063/1.5039150].
  • [17] Wróblewski P., Smolik W.: Coil design with litze wire for magnetic particle spectrometry. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 7(1)/2017, 150–153 [http://doi.org/10.5604/01.3001.0010.4605].
  • [18] Wu K. et al.: Magnetic Particle Spectroscopy: A Short Review of Applications Using Magnetic Nanoparticles. ACS Applied Nano Materials 3(6)/2020, 4972– 89 [http://doi.org/10.1021/acsanm.0c00890].
  • [19] Yang T. Q. et al.: Detection of Magnetic Nanoparticles with Ac Susceptibility Measurement. Physica C: Superconductivity and Its Applications 412– 414/2004, 1496–1500 [http://doi.org/10.1016/j.physc.2004.01.146].
  • [20] Quantum Design, MPMS Application Note 1070-207: Using PPMS Superconducting Magnets at Low Fields 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f45dfdd1-0103-4ae8-95f7-d772a6b5985a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.