PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and fault diagnosis in point absorber wave energy conversion systems using fault tree and Bayesian networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive analysis and fault diagnosis approach for wave energy conversion (WEC) systems, specifically focusing on point absorber technology, using Bayesian Networks (BNs). The main objective of this work is to develop a probabilistic framework that enhances fault detection and diagnosis by modeling the interdependencies between key subsystems, including the power take-off (PTO) mechanism, mooring lines, and electrical components. Wave energy conversion systems offer a promising solution for sustainable energy generation, but fault detection remains a critical challenge in ensuring continuous and efficient operation. The proposed approach enables a probabilistic evaluation of failure modes and their impact on overall system performance by modeling the complex interdependencies between system components. By integrating environmental factors, historical failure logs, and operational data, the Bayesian network allows real-time dynamic updates of fault probabilities, facilitating predictive maintenance techniques. The proposed approach aims to improve system reliability, reduce downtime, and optimize maintenance strategies. Case studies are provided to validate the approach, demonstrating significant improvements in early fault detection. The results underscore the potential of Bayesian networks as a powerful tool for enhancing the operational resilience and sustainability of wave energy conversion systems. The analysis focuses on key subsystems, including the power take-off mechanism, mooring lines, and electrical components, where failures are most likely to occur due to harsh marine conditions.
Czasopismo
Rocznik
Strony
art. no. 202509
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Industrial Technologies Research Laboratory, Department of Mechanical Engineering, of Applied Science, University of Tiaret, Algeria
autor
  • L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret, Algeria
autor
  • L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret, Algeria
autor
  • L2GEGI Laboratory, Department of Electrical Engineering, Faculty of Applied Science, University of Tiaret, Algeria
Bibliografia
  • 1. Fendzi Mbasso W, Molu RJJ, Ambe H, Dzonde Naoussi SR, Alruwaili M, Mobarak W, Aboelmagd Y. Reliability analysis of a grid-connected hybrid renewable energy system using hybrid Monte-Carlo and Newto Raphson methods. Front. Energy Res. 2024;12:1435221. https://doi.org/10.3389/fenrg.2024.1435221.
  • 2. European marine energy centre. Wello Penguin issues at Billia Croo. Retrieved February 15, 2025, from https://www.emec.org.uk/press-release-wellopenguin-issues-at-billia-croo.
  • 3. Ocean Energy. OE Buoy - Wave energy converter. Retrieved February 15, 2025. from https://oceanenergy.ie/oe-buoy.
  • 4. Alnujaie A, Berkani A, Negadi K, Hadji L, Ghazwani MH. Enhancing the performance and coordination of multi-point absorbers for efficient power generation and grid synchronization control. Journal of Applied and Computational Mechanics. 2024;10(3):422-442. https://doi.org/10.22055/jacm.2024.44960.4293.
  • 5. Rinaldi G, Portillo JCC, Khalid F. et al. Multivariate analysis of the reliability, availability, and maintainability characterizations of a Spar-Buoy wave energy converter farm. J. Ocean Eng. Mar. Energy. 2018;4:199-215. https://doi.org/10.1007/s40722-018-0116-z.
  • 6. Papini G, Faedo N, Mattiazzo G. Fault diagnosis and fault-tolerant control in wave energy: A perspective, Renewable and Sustainable Energy Reviews. 2024;199. https://doi.org/10.1016/j.rser.2024.114507.
  • 7. Mortazavizadeh SA, Yazdanpanah R, Gaona DC, Anaya-Lara O. Fault diagnosis and condition monitoring in wave energy converters: A review. Energies. 2023;16(19):6777. https://doi.org/10.3390/en16196777.
  • 8. Jia Jin-Zhang, Li Zhuang, Jia Peng, Yang Zhi-Guo. Reliability analysis of a complex multistate system based on a cloud bayesian network. Shock and Vibration. 2021;6660928. https://doi.org/10.1155/2021/6660928.
  • 9. Xu J, Yang Y, Hu Y, Xu T, Zhan Y. MPPT control of hydraulic power take-off for wave energy converter on artificial breakwater. J. Mar. Sci. Eng. 2020;8:304. https://doi.org/10.3390/jmse8050304.
  • 10. Ghaedi A, Sedaghati R, Mahmoudian M. et al. Reliability assessment of the ocean thermal energy conversion systems through Monte Carlo simulation considering outside temperature variation. J Mar Sci Technol. 2024;29:36-52. https://doi.org/10.1007/s00773-023-00967-0.
  • 11. Yang Y, Sørensen JD. Probabilistic availability analysis for marine energy transfer subsystem using Bayesian network. Energies. 2020;13(19):5108-5128. https://doi.org/10.3390/en13195108.
  • 12. Youness Lami. Distributed approach for fault diagnosis in open complex systems. Automatic. Université Grenoble Alpes [2020-..], 2022. English. NNT : 2022GRALT012.
  • 13. Berkani A, Ghazwani MH, Negadi K, Hadji L, Alnujaie A, Ghazwani HA. Predictive control and modeling of a point absorber wave energy harvesting connected to the grid using a LPMSG-based converter, Ocean Systems Engineering. 2024;14(1): 17-52, https://doi.org/10.12989/ose.2024.14.1.017.
  • 14. Vijayasankar V, Kumar S, Samad A, Zuo L. Analysis of an innovative compact point absorber wave energy converter concept suitable for small-scale power applications. Physics of Fluids. 2023;35(9):097140. https://doi.org/10.1063/5.0165877.
  • 15. Val DV. Reliability of marine energy converters. Energies. 2023;16(8):3387. https://doi.org/10.3390/en16083387.
  • 16. Nasri E, Jarou T, Benchikh S, El Koudia Y. Reliable energy supply and voltage control for hybrid microgrid by PID controlled with integrating of an EV charging station. Diagnostyka. 2023;24(4): 2023409. https://doi.org/10.29354/diag/174145.
  • 17. Liu B, Bi X, Gu L, Wei J, Liu B. Application of a Bayesian network based on multi-source information fusion in the fault diagnosis of a radar receiver. Sensors. 2022;22:6396. https://doi.org/10.3390/s22176396.
  • 18. Ruolan D, Zhou H. A new fault diagnosis method based on fault tree and Bayesian networks. Energy Procedia. 2012;17:1376-1382. https://doi.org/10.1016/j.egypro.2012.02.255.
  • 19. Medkour M, Bouzaouit A, Khochmane L, Bennis O. Transformation of fault trees into bayesian networks methodology for fault diagnosis. Mechanika. 2017; 23(6):891-899. https://doi.org/10.5755/j01.mech.23.6.17281.
  • 20. Yazdi M, Mohammadpour J, Li H, et al. Fault tree analysis improvements: A bibliometric analysis and literature review. Qual Reliab Engng Int. 2023;39:1639–1659. https://doi.org/10.1002/qre.3271.
  • 21. Malik A, Haque A, Bharath Kurukuru VS, Khan MA, Blaabjerg F. Overview of fault detection approaches for grid connected photovoltaic inverters, e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2022;2. https://doi.org/10.1016/j.prime.2022.100035.
  • 22. Baig AA, Ruzli R, Buang AB. Reliability analysis using fault tree analysis: A review. International Journal of Chemical Engineering and Applications. 2013;4(3):169-173.
  • 23. Chren A. Towards multi-layered reliability analysis in smart grids. 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Toulouse, France. 2017:116-119. https://doi.org/10.1109/ISSREW.2017.67.
  • 24. Araria R, Guemmour MB, Negadi K, Berkani A, Marignetti F, Bey M. Design and evaluation of a hybrid offshore wave energy converter and floating photovoltaic system for the region of Oran, Algeria. Electrical Engineering & Electromechanics. 2024;6: 11-18. https://doi.org/10.20998/2074-272X.2024.6.02.
  • 25. Ahamed A, McKee K, Howard J. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Engineering. 2020;204. https://doi.org/10.1016/j.oceaneng.2020.107248.
  • 26. Shahroozi Z, Göteman M, Nilsson E, Engström J. Environmental design load for the line force of a pointabsorber wave energy converter. Applied Ocean Research. 2022;128. https://doi.org/10.1016/j.apor.2022.103305.
  • 27. Sykora M, Markova J, Diamantidis D. "Bayesian network application for the risk assessment of existing energy production units. 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), Beer Sheva. 2016: 656-664, https://doi.org/10.1109/SMRLO.2016.116.
  • 28. Binh PC. A study on design and simulation of the point absorber wave energy converter using mechanical PTO. 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City. 2018:122-125, https://doi.org/10.1109/GTSD.2018.8595546.
  • 29. Li B, Han T, Kang F. Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network. International Journal of Computer Integrated Manufacturing. 2013;26(12):1161-1171. https://doi.org/10.1080/0951192X.2013.812803.
  • 30. Tan J, Lavidas G. A modified spectral-domain model for nonlinear hydrostatic restoring force of heaving wave energy converters. Ocean Engineering,. 2024; 309:118581. https://doi.org/10.1016/j.oceaneng.2024.118581.
  • 31. Poguluri SK, Kim,D, Bae YH. Negative stiffness mechanism on an asymmetric wave energy converter by using a weakly nonlinear potential model. China Ocean Eng. 2024;38:689-700. https://doi.org/10.1007/s13344-024-0054-6.
  • 32. Shabara M, Abdulkadir H, Abdelkhalik O. A review: indirect optimal control of wave energy converters. 569-574. Paper presented at The 12th IFAC Symposium on Control of Power & Energy Systems, Rabat, Morocco. 2024. https://doi.org/10.1016/j.ifacol.2024.07.543.
  • 33. Wang H, Li W, Wang H. Fuzzy fault tree analysis of synchronous generator excitation equipment used in power station generation. 2011 International Conference on Advanced Power System Automation and Protection, Beijing. 2011:633-636. https://doi.org/10.1109/APAP.2011.6180477.
  • 34. Fekih A, Habibi H, Simani S. Fault diagnosis and fault tolerant control of wind turbines: An overview. Energies. 2022;15:7186. https://doi.org/10.3390/en15197186.
  • 35. Toufik T, Lakehal A. Electrical power generator faults analysis using fault tree and bayesian network. Acta Universitatis Sapientiae, Electrical and Mechanical Engineering. 2023;15(1): 45-59. https://doi.org/10.2478/auseme-2023-0004.
  • 36. Sarkar A, Panja SC, Das D. Fault tree analysis of Rukhia gas turbine power plant. HKIE Transactions. 2015; 22(1):32-56. https://doi.org/10.1080/1023697X.2015.1008394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c97bdf47-7ac0-4978-a2c8-61c0bbfb9cd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.