PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation Performance of Oxygen-rich Trinitromethylsubstituted Pyrazoles: an in-silico Investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of high energy molecules was designed and their detonation properties were evaluated using thermo-chemical parameters obtained from quantum chemical calculations at B3LYP/6-31G(d,p) level. The designed molecules exhibited high density, positive oxygen balance and excellent detonation properties. The impact sensitivity of these molecules, in terms of H50 values, was also evaluated from structural correlations. Among these, 3,4,5-tris(trinitromethyl)1H-pyrazol-1-amine (N13) showed the highest detonation pressure (40.67 GPa) and highest detonation velocity (9.17 km/s), though it exhibited high impact sensitive (H50 = 15 cm). Interestingly, 4,5-dinitro-3-(trinitromethyl)-1H-pyrazol-1-amine (N01) (detonation pressure 39.69 GPa; detonation velocity 9.23 km/s) was found to be an ideal high energy molecule with a near zero oxygen balance. The H50 value of N01 was predicted to be 64 cm, which is higher in magnitude, indicating a lower sensitivity than that of the conventionally used RDX (H50 = 26 cm).
Rocznik
Strony
537--533
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Analytical and Spectroscopy Division, Analytical Spectroscopy and Ceramic Group, Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram-695022, Kerala, India
autor
  • Analytical and Spectroscopy Division, Analytical Spectroscopy and Ceramic Group, Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram-695022, Kerala, India
Bibliografia
  • [1] Chi, W. J.; Guo, Y. Y.; Li, Q.S.; Li, Z. S. Substituent Effects on the Properties Related to Detonation Performance and Stability for Pentaprismane Derivatives. Theor. Chem. Acc. 2016, 135: 145-155.
  • [2] Gobel, M.; Klapotke, T. M. Development and Testing of Energetic Materials: the Concept of High Densities Based on the Trinitroethyl Functionality. Adv. Funct. Mater. 2009, 19: 347-365.
  • [3] Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). J. Hazard. Mater. 2009, 161: 589-607.
  • [4] Wei, T.; Zhu, W.; Zhang, X.; Li, Y.F.; Xiao, H. Molecular Design of 1,2,4,5-Tetrazine Based High Energy Density Materials. J. Phys. Chem. A. 2009, 113: 9404-9412.
  • [5] Anniappan, M.; Talwar, G. M.; Venugopalan, S.; Gandhe, B. R. Synthesis, Characterization and Thermolysis of 1,1-Diamino-2,2-dinitroethylene (FOX-7) and its Salts. J. Hazard. Mater. 2006, 137: 812-819.
  • [6] Garg, S.; Gao, H.; Joo, Y-H.; Parrish, D.A.; Shreeve, J. M. J. Taming of the Silver FOX. J. Am. Chem. Soc. 2010, 132: 8888-8890.
  • [7] Zhu, W.; Zhang, C.; Wei, T.; Xiao, H. Computational Study of Energetic Nitrogenrich Derivatives of 1,1’- and 5,5’-Bridged Ditetrazoles. J. Comput. Chem. 2011, 32: 2298-2312.
  • [8] Zhu, W.; Yan, Q.; Li, J.; Cheng, B.; Shao, Y.; Xia, X.; Xiao, H. Prediction of the Properties and Thermodynamics of Formation for Energetic Nitrogen-rich Salts Composed of Triaminoguanidinium Cation and 5-Nitroiminotetrazolate-Based Anions. J. Comput. Chem. 2012, 33: 1781-1789.
  • [9] Liu, H.; Wang, F.; Wang, G.-X.; Gong, X.-D. Theoretical Investigations on Structure, Density, Detonation Properties, and Sensitivity of the Derivatives of PYX. J. Comput. Chem. 2012, 33: 1790-1796.
  • [10] Zaitsev, A. A; Dalinger, I. L.; Shevelev, S. A. Dinitropyrazoles. Russ. Chem. Bull. 2009, 78: 589-627.
  • [11] Herve, G.; Roussel, C.; Graindorg, H. Selective Preparation of 3,4,5-Trinitro-1Hpyrazole: A Stable All-carbon-nitrated Arene. Angew. Chem. Int. Ed. 2010, 49: 3177-3181.
  • [12] Kamlet, M. J.; Adolph, H. G. Fluoronitroaliphatics. II. Fluorodinitromethyl Compounds. Synthetic Approaches and General Properties. J. Org. Chem. 1968, 33: 3073-3080.
  • [13] Grakauskas, V.; Baum, K. Michael Reactions of 2-Fluoro-2,2-dinitroethanol and 2,2-Dinitropropanol with Olefinic and Acetylenic Acceptors. J. Org. Chem. 1969, 34: 3927-3930.
  • [14] Gobel, M.; Tchitchanov, B. H.; Murray, J. S.; Politzer, P.; Klapotke, T. M. Chlorotrinitromethane and its Exceptionally Short Carbon-chlorine Bond. Nat. Chem. 2009, 1: 229-235.
  • [15] Venugopal, T.; Gao, H.; Shreeve, J.M. Trinitromethyl-substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties. J. Am. Chem. Soc. 2011, 133: 6464-6471.
  • [16] Rice, B. M.; Pai, S. V.; Hare, J. Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. Combust. Flame 1999, 118: 445-458.
  • [17] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A. 2002, 106: 1770-1783.
  • [18] Kamlet, M. J.; Jacob, S. J. Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C, H, N, O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [19] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford CT, 2004.
  • [20] Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5. Semichem Inc., Shawnee Mission KS, 2009.
  • [21] Tirado-Rives, J.; Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theo Comput. 2008, 4: 297-306.
  • [22] Politzer, P.; Lane, P.; Murry, J. S. Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-tetraazacubane. Cent. Eur. J. Energ. Mater. 2011, 8(1): 39-52.
  • [23] Politzer, P.; Murry, J. S. Some Perspective on Estimating Detonation Properties of C, H, N, O Compounds. Cent. Eur. J. Energ. Mater. 2011, 8(3): 209-220.
  • [24] Lu, T.; Chen, F. Multiwfn: A Multifunctional Wave Function Analyzer. J. Comput. Chem. 2012, 33: 580-592.
  • [25] Jafari, M.; Keshavarz, M. H.; Noorbala, M. R.; Kamalvand, M. A Reliable Method for Prediction of the Condensed Phase Enthalpy of Formation of High Nitrogen Content Materials through their Gas Phase Information. Chem. Sel. 2016, 1: 5286-5296.
  • [26] Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbe, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107: 2095-2101.
  • [27] Akhavan, J. The Chemistry of Explosives. 2nd Eds., Royal Society of Chemistry, Cambridge, 2004; ISBN 0854046402.
  • [28] Kamlet, M. J.; Adolph, H. G. The Relationship of Impact Sensitivity with Structure of Organic High Explosives II. Polynitro Aromatic Explosives. Propellants Explos. Pyrotech. 1979, 4: 30-34.
  • [29] Jafari, M.; Keshavarz, M. H. A Simple Method for Calculating the Detonation Pressure of Ideal and Non-ideal Explosives Containing Aluminium and Ammonium Nitrate. Cent. Eur. J. Energ. Mater. 2017, 14(4): 966-983.
  • [30] Keshavarz, M. H.; Kamalvand, M.; Jafari, M.; Zamani, A. An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives. Cent. Eur. J. Energ. Mater. 2016, 13(2): 381-396.
  • [31] Keshavarz, M. H.; Pouretedal, H. R.; Ghaedsharafi, A. R.; Taghizadeh, S. E. Simple Method for Prediction of the Standard Gibbs Free Energy of Formation of Energetic Compounds. Propellants Explos. Pyrotech. 2014, 39: 815-818.
  • [32] Oskoei, Y. M.; Keshavarz, M. H. Improved Method for Reliable Predicting Enthalpy of Fusion of Energetic Compounds. Fluid Phase Equilibria. 2012, 326: 1-14.
  • [33] Keshavarz, M. H.; Pouretedal, H. R. A New Simple Approach to Predict Entropy of Fusion of Nitroaromatic Compounds. Fluid Phase Equilibria. 2010, 298: 24-32.
  • [34] Keshavarz, M. H. Improved Prediction of Heats of Sublimation of Energetic Compounds Using their Molecular Structure. J. Hazard. Mater. 2010, 177: 648-659.
  • [35] Keshavarz, M. H.; Gharagheizi, F.; Pouretedal, H. R. Improved Reliable Approach to Predict Melting Points of Energetic Compounds. Fluid Phase Equilibria. 2011, 308: 114-128.
  • [36] Keshavarz, M. H.; Moradi, S.; Saatluo, B. E.; Rahimi, H.; Madram, A. R. A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds. J. Therm. Anal. Calorim. 2013, 112: 1453-1463.
  • [37] Politzer, P.; Murray, J. S. Impact Sensitivity and Crystal Lattice Compressibility/Free Space. J. Mol. Model. 2014, 20: 2223-2227.
  • [38] Cao, C.; Gao, S. Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzene and Saturated Nitro Compounds. J. Phys. Chem. B. 2007, 111: 12399-12402.
  • [39] Srinivasan, P.; Maheshwari, K.; Jothi, M.; Kumaradhas, P. Charge Density Distribution and Sensitivity of the Highly Energetic Molecule 2,4,6-Trinitro-1,3,4- triazine: a Theoretical Study. Cent. Eur. J. Energ. Mater. 2012, 9(1): 59-76.
  • [40] Zhang, C. Review of the Establishment of Nitro Group Charge Method and its Applications. J. Hazard. Mater. 2009, 161: 21-28.
  • [41] Keshavarz, M. H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants Explos. Pyrotech. 2013, 38: 754-760.
  • [42] Li, J.; Huang, Y.; Dong, H. Theoretical Calculation and Molecular Design for High Explosives: Theoretical Study on Polynitropyrazines and their N-Oxides. Propellants Explos. Pyrotech. 2004, 29: 231-235.
  • [43] Yang, K.; Park, Y. H.; Cho, S. G.; Lee, H. W.; Kim, C. K.; Koo, H. J. Theoretical Studies on the Formation Mechanism and Explosive Performance of Nitrosubstituted 1,3,5-Triazines. J. Comput. Chem. 2010, 31: 2483-2492.
  • [44] Wang, R.; Xu, H.; Guo, Y.; Sa, R.; Shreeve, J.M.J. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based Energetic Salts: Synthesis and Promising Properties of a New Family of High-density Insensitive Materials. J. Am. Chem. Soc. 2010, 132: 11904-11905.
  • [45] Wang, G.; Xiao, H.; Ju, X.; Gong, X. Calculation of Detonation Velocity, Pressure, and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry. Propellants Explos. Pyrotech. 2006, 31: 361-368.
  • [46] Licht, H.-H. Performance and Sensitivity of Explosives. Propellants Explos. Pyrotech. 2000, 25: 126-132.
  • [47] Politzer, P.; Murray, J. S. High Performance, Low Sensitivity: Conflicting or Compatible? Propellants Explos. Pyrotech. 2016, 41: 414-425.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dad179ee-738b-42b2-8e8c-d3781e44b546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.