Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The thermal behaviour of nanoclay can be considered an important factor in obtaining high-performance polymer nanocomposite. Thus, the current study aims to investigate the effect of plasma treatment on the thermal stability of two organically modified nanoclays, Cloisite 30B (C30B) and Nanomer I.34TCN (I.34TCN), compared with pristine NaMMT. Design/methodology/approach: The nanoclays were studied and characterised using Thermogravimetric Analysis (TGA). TGA was used to measure the weight loss of the plasma-treated and untreated nanoclays (C30B, I.34TCN, and NaMMT nanoclays) over a 30-630 C temperature range. Findings: Based on TGA results, the decomposition of all plasma-treated nano clays (C30B, I.34TCN and pristine NaMMT) was shifted to a lower temperature than in the untreated ones at all those stages. Thus, plasma treatment was successfully used as a convenient method to alter the chemical structure and surface morphology of MMT nanoclays for better thermal behaviour and filling distribution. Research limitations/implications: This hypothesis can be corroborated by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) for a better understanding of the structural and surface changes that occurred due to the plasma action, which can provide an interpretation of the changes in the thermal behaviour of nanoclays. Practical implications: The plasma treatment, therefore, can improve the thermal stabilisation of the nanocomposite powders for the LS fabricated parts and even for the surrounding powder for the recovery process. Plasma-treated nano clay, therefore, can be used to reinforce polymers with an expectation of increasing the thermal stability of the resultant composites. Thus, the plasma-treated composite can be fabricated for laser sintering applications in fields that require high thermal stability. Originality/value: The surface modification of nanoclay powders via plasma treatment can be used as a convenient method to alter the chemical structure and surface morphology for better thermal behaviour and filling distribution.
Wydawca
Rocznik
Tom
Strony
5--14
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- Technical Institute of Basra, Southern Technical University, Basra, Iraq
autor
- Technical Institute of Basra, Southern Technical University, Basra, Iraq
Bibliografia
- [1] A. Wagner, A.P. White, M.C. Tang, S. Agarwal, T.A. Stueckle, Y. Rojanasakul, R.K. Gupta, C.Z. Dinu, Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity, Scientific Reports 8 (2018) 10709. DOI: https://doi.org/10.1038/s41598-018-28884-y
- [2] R. Salehiyan, S.S. Ray, J. Bandyopadhyay,V. Ojijo, The Distribution of Nanoclay Particles at the Interface and Their Influence on the Microstructure Development and Rheological Properties of Reactively Processed Biodegradable Blend Nanocomposites, Polymers 9/8 (2017) 350. DOI: https://doi.org/10.3390/polym9080350
- [3] V.A. Agubra, P.S. Owuor, M.V. Hosur, Influence of nanoclay dispersion methods on the mechanical behavior of e-glass/epoxy nanocomposites, Nanomaterials 3/3 (2013) 550-563. DOI: https://doi.org/10.3390/nano3030550
- [4] F. Ben Dhieb, E.J. Dil, S.H. Tabatabaei, F. Mighri, A. Ajji, Effect of nanoclay orientation on oxygen barrier properties of LbL nanocomposite coated films, RSC Advances 9/3 (2019) 1632-1641. DOI: https://doi.org/10.1039/C8RA09522A
- [5] A. Derungs, M. Rico, J. López, L. Barral, B. Montero, R. Bouza, Influence of the hydrophilicity of montmorillonite on structure and properties of thermoplastic wheat starch/montmorillonite bionanocomposites, Polymers and Advanced Technologies 32/11 (2021) 4479-4489. DOI: https://doi.org/10.1002/pat.5450
- [6] J. Jerome, N.R.J. Hynes, R. Sankaranarayanan, Mechanical behavioural testing of fibre metal laminate composites, AIP Conference Proceedings 2220/1 (2020) 140035. DOI: https://doi.org/10.1063/5.0001244
- [7] I. Kausar, I. Ahmad, M. Maaza, M.H. Eisa, State-of-the-Art Nanoclay Reinforcement in Green Polymeric Nanocomposite: From Design to New Opportunities, Minerals 12/12 (2022) 1495. DOI: https://doi.org/10.3390/min12121495
- [8] F. Guo, S. Aryana, Y. Han, Y. Jiao, A review of the synthesis and applications of polymer-nanoclay composites, Applied Sciences 8/9 (2018) 1696. DOI: https://doi.org/10.3390/app8091696
- [9] I. Giannakas, Na-Montmorillonite vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity, Nanomaterials 10/6 (2020) 1027. DOI: https://doi.org/10.3390/nano10061027
- [10] R.I. Narro-Cespedes, M.G. Neira-Velazquez, L.F. MoraCortes, E. Hernandez-Hernandez, A.O. Castaneda-Facio, M.C. Ibarra-Alonso, Y.K. Reyes-Acosta, G. Soria-Arguello, J.J. Borjas-Ramos, Surface modification of sodium montmorillonite nanoclay by plasma polymerization and its effect on the properties of polystyrene nanocomposites, Journal of Nanomaterials 2018 (2018) 2480798. DOI: https://doi.org/10.1155/2018/2480798
- [11] T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang, Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Applied Clay Science 169 (2019) 48-66. DOI: https://doi.org/10.1016Zj.clay.2018.12.006
- [12] Y. Xi, Z. Ding, H. He, R.L. Frost, Structure of organoclays - an X-ray diffraction and thermogravimetric analysis study, Journal of Colloid and Interface Science 277/1 (2004) 116-120. DOI: https://doi1org/10J,1016/ij.cis.2004.L04.L053
- [13] I-K. Yang, P.-H. Tsai, Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nanocomposites: Effect of surfactant, Polymer 47/14 (2006) 5131-5140. DOI: https://doi.org/10.1016/j.polymer.2006.04.065
- [14] N. Yaghmaeiyan, M. Mirzaei, R. Delghavi, Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review, Results in Chemistry 4 (2022) 100549. DOI: https://doi.org/10.1016zj.rechem.2022.100549
- [15] A. Almansoori, K.J. Abrams, A.D. Ghali Al-Rubaye, C. Majewski, C. Rodenburg, Novel plasma treatment for preparation of laser sintered nanocomposite parts, Additive Manufacturing 25 (2019) 297-306. DOI: https://doi1org/10J,1016/j.addma.2018J.11J016
- [16] B.O. Sivadas, I. Ashcroft, A.N. Khlobystov, R.D. Goodridge, Laser sintering of polymer nanocomposites, Advanced Industrial and Engineering Polymer Research 4/4 (2021) 277-300. DOI: https://doi.org/10.1016zj.aiepr.2021.07.003
- [17] A. Almansoori, C. Majewski, C. Rodenburg, Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment, JOM 69 (2017) 2278-2285. DOI: https://doi.org/10.1007/s11837-017-2408-5
- [18] A. Almansoori, R. Seabright, C. Majewski, C. Rodenburg, Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS), IOP Conference Series: Materials Science and Engineering 195/1 (2017) 012003. DOI: https://doi.org/10.1088/1757-899X/195/1/012003
- [19] T.M. Majka, A. Leszczyńska, K. Pielichowski, Thermal Stability and Degradation of Polymer Nanocomposites, in: X. Huang, C. Zhi (eds), Polymer Nanocomposites, Springer, Cham, 2016, 167-190. DOI: https://doi.org/10.1007/978-3-319-28238-1 7
- [20] G. Barra, L. Guadagno, M. Raimondo, M.G. Santonicola, E. Toto, S.V. Ciprioti, A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications, Polymers 15/18 (2023) 3786. DOI: https://doi.org/10.3390/polym15183786
- [21] B. Parveez, M.I. Kittur, I.A. Badruddin, S. Kamangar, M. Hussien, M.A. Umarfarooq, Scientific Advancements in Composite Materials for Aircraft Applications: A Review, Polymers 14/22 (2022) 5007. DOI: https://doi.org/10.3390/polym14225007
- [22] S. Rajendran, G. Palani, A. Kanakaraj, V. Shanmugam, A. Veerasimman, S. Gądek, K. Korniejenko, U. Marimuthu, Metal and Polymer Based Composites Manufactured Using Additive Manufacturing - A Brief Review, Polymers 15/11 (2023) 2564. DOI: https://doi.org/10.3390/polym15112564
- [23] C. Huang, X. Qian, R. Yang, Thermal conductivity of polymers and polymer nanocomposites, Materials Science and Engineering: R: Reports 132 (2018) 1-22. DOI: https://doi.org/10.1016Zi.mser.2018.06.002
- [24] C. Thouzeau, C. Henneuse, M. Sclavons, J. Devaux, J. Soulestin, G. Stoclet, Emission of volatile organic compounds during processing and use of organoclaybased nanocomposites, Polymer Degradation and Stability 98/2 (2013) 557-565. DOI: https://doi.org.1016/i.polymdegtads^ab.20122_11.019
- [25] H. Liu, P. Yuan, D. Liu, H. Bu, H. Song, Z. Qin, Applied Clay Science Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals, Applied Clay Science 153 (2018) 205-216. DOI: https://doi.org/10.1016/bclay.2017.12.028
- [26] E. Kenawy, M. Azaam, K. Saad-allah, A. El-abd, Preparation of organophilic montmorillonite-based dimethylamino benzaldehyde-Schiff-base as antibacterial agents, Arabian Journal of Chemistry 12/3 (2019) 405412. DOI: https://doi.org/10.1016/j.arabjc.2016.08.010
- [27] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering: R: Reports 28/1-2 (2000) 1-63. DOI: https://doi.org/10.1016/S0927-796X(00)00012-7
- [28] M. Huski, Ź. Majda, M. Ivankovi, Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modi fi ed by silane and by quaternary ammonium salts, Applied Clay Science 85 (2013) 109115. DOI: https://doi.org/10.1016/bclay.2013.09.004
- [29] D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers ? Part II: An overview on thermal decomposition of polycondensation polymers, Thermochimica Acta 523/1-2 (2011) 25-45. DOI: https://doi.org/10.1016/btca.2011.06.012
- [30] P.H. Camani, J.P.M. Toguchi, A.P.S.M. Fiori, D. dos Santos Rosa, Impact of unmodified (PGV) and modified (Cloisite20A) nanoclays into biodegradability and other properties of (bio) nanocomposites, Applied Clay Science 186 (2020) 105453. DOI: https://doi.org/10.1016/bclay.2020.105453
- [31] L.A. Utracki, Clay-containing polymeric nanocomposites and their properties, IEEE Electrical Insulation Magazine 26/4 (2010) 8-15. DOI: https://doi.org/10.1109/MEI.2010.5511184
- [32] G.G. Gutierrez, Oxydation of Clay Nanoreinforced Polyolefins, PhD Thesis, l’Ecole Nationale Superieure d'Arts et Metiers, Paris, 2010.
- [33] I-K. Yang, P.-H. Tsai, Preparation and characterization of polyether-block-amide copolymer/clay nanocomposites, Polymer Engineering and Science 47/3 (2007) 235-243. DOI: https://doi.org/10.1002/pen.20670
- [34] Z. Zhang, J.H. Lee, S.H. Lee, S.B. Heo, C.U. Pittman Jr., Morphology, thermal stability and rheology of poly(propylene carbonate)/organoclay nanocomposites with different pillaring agents, Polymer 49/12 (2008) 2947-2956. DOI: https://doi.org/10.1016/bpolymer.2008.04.034 [35] A. Almansoori, R. Masters, K. Abrams, J. Schäfer, T. Gerling, C. Majewski, C. Rodenburg, Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments, Plasma Processes and Polymers 15/7 (2018) 1800032. DOI: https://doi.org/10.1002/ppap.201800032
- [36] F.G. Alabarse, R.V. Conceięao, N.M. Balzaretti, F. Schenato, A.M. Xavier, In-situ FTIR analyses of bentonite under high-pressure, Applied Clay Science 51/1-2 (2011) 202-208. DOI: https://doi.org/10.1016/bclay.2010.11.017
- [37] D.S. Moraes, R.S. Angelica, C.E.F. Costa, G.N.R. Filho, J.R. Zamian, Bentonite functionalized with propyl sulfonic acid groups used as catalyst in esterification reactions, Applied Clay Science 51/3 (2011) 209-213. DOI: https://doi.org/10.1016/j.clay.2010.11.018
- [38] W. Xie, Z. Gao, K. Liu, W.-P. Pan, R. Vaia, D. Hunter, A. Singh, Thermal characterization of organically modified montmorillonite, Thermochimica Acta 367368 (2001) 339-350. DOI: https://doi.org/10.1016/S0040-6031(00)00690-0
- [39] P. Singla, R. Mehta, S.N. Upadhyay, Clay Modification by the Use of Organic Cations, Green and Sustainable Chemistry 2/1 (2012) 21-25. DOI: https://doi.org/10.4236/gsc.2012.21004
- [40] J.M. Cervantes-Uc, J.V. Cauich-Rodriguez, H. Vazquez-Torres, L.F. Garfias-Mes^as, D.R. Paul, Thermal degradation of commercially available organoclays studied by TGA-FTIR, Thermochimica Acta 457/1-2 (2007) 92-102. DOI: httpsl//doiorg/10lO16jJLtea2007JO3J008
- [41] A.K. Barick, D.K. Tripathy, Effect of organoclay on thermal and dynamic mechanical properties of novel thermoplastic polyurethane nanocomposites prepared by melt intercalation technique, Polymers Advanced Technology 21/12 (2010) 835-847. DOI: https://doi.org/10.1002/pat.1507
- [42] A. De Mello, F. Guimaraes, V. Sampaio, T. Ciminelli, W. Luiz, Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions, Applied Clay Science 42/3-4 (2009) 410-414. DOI: https://doi.org/10.1016/i.clay.2008.04.006
- [43] A. Almansoori, R.A. Ghadban, M.H. Ali, M.M. Sabri, Studying the influence of waste glass and montmorillonite powders on the thermal conductivity and hardness of poly(methyl methacrylate) polymer matrix, Journal of Achievements in Materials and Manufacturing Engineering 118/2 (2023) 49-56. DOI: https://doi.org/10.5604/01.3001.0053.7661
- [44] M. Mert, Impact modified nylon 66-organoclay nanocomposites, MSc Thesis, Middle East Technical University, Ankara, Turkey, 2007.
- [45] A.S. Alex, R.S. Rajeev, V. Sekkar, C. Gouri, Pure and Applied Chemistry The role of organoclay on the properties of Polymethylsilsesquioxane : A systematic study, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 54/12 (2017) 885-893. DOI: https://doi.org/10.1080/10601325.2017.1340076
- [46] G. Edwards, P. Halley, G. Kerven, D. Martin, Thermal stability analysis of organo-silicates, using solid phase micro extraction techniques, Thermochimica Acta 429/1 (2005) 13-18. DOI: https://doi.org/10.1016/j.tca.2004.11.020
- [47] A. Ramani, M. Hagen, J. Hereid, J. Zhang, D. Bakirtzis, M. Delichatsios, Interaction of a phosphorus-based FR, a nanoclay and PA6 - Part 1 : Interaction of FR and nanoclay, Fire and Materials 33/6 (2009) 273-285. DOI: https://doi.org/10.1002/fam.1004
- [48] P. Kiliaris, C.D. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy, Progress in Polymer Science 35/7 (2010) 902-958. DOI: https://doi.org/10.1016/i.progpolymsci.2010.03.001
- [49] Y.Y. Su, S.P. Rwei, W.J. Gou, H.H. Chan, K.C. Cheng, Effect of polar interactions on the structure and rheology of EVA/Montmorillonite nanocomposites, Journal of Thermoplastic Composite Materials 25/8 (2011) 987-1003. DOI: https://doi.org/10.1177/0892705711415740
- [50] N. Relosi, O.A. Neuwald, A.J. Zattera, D. Piazza, S.R. Kunst, Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings, Pol^meros 28/4 (2018) 355-367. DOI: https://doi.org/10.1590/0104-1428.01616
- [51] P. Capkova, J. Matousek, J. Rejnek, N. Bendlova, J. Pavl^k, M. Kormunda, L. SpHchalova, V. Pilarova, Effect of plasma treatment on structure and surface properties of montmorillonite, Applied Clay Science 129 (2016) 15-19. DOI: https//doi.org/10.1016i.clay.2016J.04.016
- [52] H. Ming, K.M. Spark, Radio frequency plasma-induced hydrogen bonding on kaolinite, The Journal of Physical Chemistry B 107/3 (2003) 694-702. DOI: https://doi.org/10.1021/jp025803i
- [53] R. Scaffaro, A. Maio, Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles, Polymer Testing 31/7 (2012) 889-894. DOI: https://doi.org/10.1016/i.polymertesting.2012.06.006
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ced329-acc9-41c2-88a5-7e1b079cb0c9