PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the northern part of the Marrakech High Atlas (MHA), along the southern Variscan segment of the Western Meseta, a Variscan granitic intrusion crops out, intruding metasediments and meta-volcanosedimentary rocks of Early Cambrian to Ordovician age. A new whole-rock Rb-Sr isochron age of 268 ± 9 Ma for the granite, combined with a previously published whole-rock Rb-Sr radiometric dating (271 ± 3 Ma), reveals a post-kinematic (tectonic) character with regard to the main Variscan deformational event, belonging within the tectonic context of the Moroccan Variscan orogenic belt. Geochemically, the Azegour intrusion is metaluminous to peraluminous and exhibits a calc-alkaline affinity with a ferruginous composition. The massif shows an extremely differentiated character (SiO2 = 77.53–78.14 per cent), K2O and high total alkali contents, FeOt/(FeOt + MgO) and Ga/Al ratios, which have typical characteristics of an A-type granite. In addition, the granite contains high concentrations of LREE (LaN/SmN= 7.9–13.67) relative to HREE (LaN/YbN= 4.81–11.61) and a well-defined Eu negative anomaly (Eu/Eu* = 0.44–0.75). The granitic samples exhibit a strong enrichment of the most incompatible elements (RbN/YbN = 69.84–159.98) and a strong depletion of Ba, Sr, Eu, Nb, P and Ti. These characteristics are similar to those of A1-type granites. The absence of mineralogy typical of an S-type granite, combined with its weakly peraluminous character [A/CNK (molar Al2O3/CaO+Na2O+K2O) = 1,013–1,045], suggest that there is little or no significant involvement of supracrustal sources in the petrogenesis of the intrusion studied. Despite the strongly differentiated character of Azegour granitic rocks samples, their multi-element patterns shows many similarities to those of I-type granitoids, which has led to postulate that the parental liquids of A1-type were derived from partial melting of mafic magmas. The representative samples studied show less depleted εNd(t = 270 Ma)values of –0.94 to –4.85 and lower positive to slightly negative εSr(t = 270 Ma) values of –1.45 to 9.32. The isotopic data suggest that the Azegour granite was emplaced 270 myr ago, apparently generated by partial melting of a mafic/intermediate magma source in the lower crust as a result of the underplating of the asthenosphere mantle-derived Oceanic Island Basalt-like magmas. Alternatively, their isotopic signatures also can be attributed to the interaction and/or hybridisation of basaltic liquids derived from the mantle with these lower crust materials. The generated parental magma probably occurred at deep structural levels and involved fractional crystallisation processes by the separation of a mineralogical association composed of plagioclase + potassium feldspar ± biotite ± amphibole ± sphene ± apatite. The whole-rock Rb-Sr age of 268 ± 9 Ma, whole-rock geochemistry and Sr-Nd isotopic compositions of εNd(t = 270 Ma) and εSr(t = 270 Ma), combined with fieldwork data, suggest that the Azegour granite was emplaced during the later stage of compressional Variscan events in the MHA.
Czasopismo
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 88 poz.
Twórcy
  • Geodynamic and Geomatic Labrotory, Department of Geology. Chouaib Doukkali University, Route Ben Maachou, B.P.20, 24.000 El Jadida, Morocco
  • Department of Geosciences, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
autor
  • Institute of Earth Sciences, Department of Geosciences, School of Science and Technology of the University of Evora, 7000-671 Evora, Portugal
autor
  • Department of Mineral Resources, College of Petroleum Geology and Minerals, Bahri University, Khartoum 1660, Sudan
  • Department of Mineral Resources, College of Petroleum Geology and Minerals, Bahri University, Khartoum 1660, Sudan
Bibliografia
  • Ait Ayad, N., Ribeiro, M.L., Solá, R., Moreira M.E., Dias, R., Bouabdelli, M., Ezzouhairi, H. & Charif, A., 2000. The Azegour Granite (Morocco): geochemical mapping and geodynamic interpretation. Communications of the Geological and Mining Institute, Lisbon, Portugal, 87, 155–164.
  • Arenas, R., Martínez, S.S., Albert, R., Haissen, F., Fernández-Suárez, J., Pujol-Solà, N., Andonaegui, P., Fernández, R.D., Proenza, J.A., Garcia-Casco, A. & Gerdes, A., 2021. 100 myr cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic–Devonian ophiolites from the NW African–Iberian margin of Gondwana and the Variscan Orogen. Geological Society of London Special Publications 503, 169–184.
  • Barbarin, B., 1999. A review of the realtionships between granitoid types, their origin and their geodynamic environment. Lithos 46, 605–626.
  • Barker, F., 1979. Trondhjemite: definition, environment and hypotheses of origin. [In:] Barker, F. (Ed.): Trondhjemites, dacites and related rocks. Elsevier 1–12.
  • Batchelor, R.A. & Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48, 43–55.
  • Berrada, S.H., Hajjaji, M. & Belkabir, A., 2011. Mineralogical and geochemical features of the Wollastonite deposit of Azegour, Haut-Atlas (Morocco). Journal of African Earth Sciences 60, 247–252.
  • Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97, 1–29.
  • Brown, G.C., Thorpe, R.S. & Webb, P.C., 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society of London 141, 413–26.
  • Brown, M., 1991. Comparative geochemical interpretation of Permian-Triassic plutonic complexes of the Coastal Range and Altiplano (23°30’ to 26°30’S), northern Chile. Geological Society of America 265, 157–171.
  • Castro, A., 2014. The off-crust origin of granite batholiths. Geoscience Frontiers 5, 63–75.
  • Castro, A., 2021. A non-basaltic experimental cotectic array for calc-alkaline batholiths. Lithos 382, 105929.
  • Chappell, B.W. & White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173–174.
  • Chappell, B.W. & White. A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth Science 83, 1–26.
  • Chopin, F., Leprêtre, R., El Houicha, M., Tabaud, A.S., Schulmann, K., Míková, J., Barbarand, J. & Chebli, R., 2023. U–Pb geochronology of Variscan granitoids from the Moroccan Meseta (Northwest Africa): Tectonic implications. Gondwana Research 117, 274–294.
  • Clarke, D.B., 1992. Granitoid rocks. Chapman & Hall, London, 283 pp.
  • Clemens, J.D., Holloway, J.R. & White, A.J.R., 1986. Origin of an A-type granite: experimental constraints. American Mineralogist 71, 317–324.
  • Collerson, K.D., 1982. Geochemistry and Rb-Sr geochronology of associated Proterozoic peralkaline and subalkaline anorogenic granites from Labrador. Contributions to Mineralogy and Petrology 81, 126–147.
  • Collins, W.J., Beams, S.D., White, A.J.R. & Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189–200.
  • Cornée, J.J., Ferrandini, J. & Bernard, S., 1987. The Western High Atlas Paleozoic, a middle Cambrian graben between two dextral strike-slip with N60ºE trend, Moroccan Variscides. Comptes Rendus de l’Académie des Sciences 305, 499–503.
  • Cornée, J.J., Muller, J. & Tayebi, M., 1990. Evidence of a late-Hercynian post-schistose overlap with suppressive character in the Western Paleozoic High Atlas (Morocco). Comptes Rendus de l’Académie des Sciences 305, 1521–1526.
  • Cui, X., Sun, M., Zhao, G., Zhang, Y. & Yao, J., 2021. Twostage mafic-felsic magma interactions and related magma chamber processes in the arc setting: An example from the enclave-bearing calc-alkaline plutons, Chinese Altai. Geochemistry, Geophysics, Geosystems 22, 12.
  • De La Roche, H., Leterrier, J., Grandclaude, P., & Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analysis. Its relationships with current nomenclature. Chemical Geology 29, 183–210.
  • Debon, F. & Le Fort, P., 1983. A chemical and mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 135–14.
  • Debon, F. & Le Fort, P., 1988. A cationic classification of common plutonic rocks and their magmatic classification principles, methods, applications. Bulletin de la Société française de Minéralogie 111, 493–510.
  • Delchini, S., Lahfid, A., Lacroix, B., Baudin, T., Hoepffner, C., Guerrot, C., Lach, P., Saddiqi, O. & Ramboz, C., 2018. The geological evolution of the Variscan Jebilet Massif, Morocco, inferred from new structural and geochronological analyses. Tectonics 37, 4470–4493.
  • DePaolo, D.J. & Wasserburg, G.J., 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta 43, 615–627.
  • Dias, R., Hadani, M., Leal Machado, I., Adnane, N., Hendaq, Y., Madih, K. & Matos, C., 2011. Variscan structural evolution of the western High Atlas and the Haouz plain (Morocco). Journal of African Earth Sciences 61, 331–342.
  • Dickin, A.P., 1997. Radiogenic isotope geology. Cambridge University Press, 452 pp.
  • Eby, G.N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–134.
  • Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 20, 641–644.
  • El Bouseily, A.M. & El Sokkary, A.A., 1975. The relations between Rb, Ba and Sr in granitic rocks. Chemical Geology 16, 207–219.
  • El Hadi, H., Simancas, J.F., Tahiri, A., Lodeiro, J.F., Azor, A. & Martinez-Poyatos, D., 2006. Comparative review of the Variscan granitoids of Morocco and Iberia: proposal of a broad zonation. Geodinamica Acta 19(2), 103–116.
  • EL Hadi, H., Tahiri, A., Reddad, A., 2003. Les granites varisques post-collisionnels du Maroc Oriental: une province magmatique calc-alcaline à shoshonitique [The post-collisional Variscan granites of Eastern Morocco: a calc-alkaline to shoshonitic magmatic province]. Comptes Rendus Géoscience 335, 959–967.
  • Essaifi, A., Lagarde, J.L. & Capdevila, R., 2001. Deformation and displacement from shear zone patterns in the Variscan upper crust (Jebilet, Morocco). Journal of African Earth Sciences 32, 335–350.
  • Essaifi, A., Potrel, A., Capdevila, R. & Lagarde, J.L., 2003. Datation U-Pb: âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). Implications géodynamiques [U-Pb dating: age establishment of bimodal magmatism of the central Jebilet (Varisk Range, Morocco). Geodynamic implications]. Comptes Rendus Géoscience 335, 193–203.
  • Evensen, N.M., Hamilton, P.J. & O’Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica Cosmochimica Acta 42, 1199–1212.
  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. & Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–2048.
  • Gasquet, D., Stussi, J.M. & Nachit, H., 1996. Les granites varisques du Maroc dans le cadre de l‘évolution géodynamique régionale [The Variscan granites of Morocco in the context of regional geodynamic evolution]. Bulletin de la Société Géologique de France 167, 517–528.
  • Gasquet, D., Leterrier, J., Mrini, Z. & Vidal, Ph., 1992. Petrogenesis of the Hercynian Tichka Plutonic Complex (Western High Atlas, Morocco): trace element and Rb-Sr and Sm-Nd isotopic constraints. Earth and Planetary Science Letters 108, 29–44.
  • Grebennikov, A.V., 2014. A-type granites and related rocks: petrogenesis and classification. Russian Geology and Geophysics 55, 1353–1366.
  • Hadani, M., 2009. Evolução tectono-metamórfica e magmática do sector setentrional do Alto Atlas ocidental (Marrocos) [Tectono-metamorphic and magmatic evolution of the northern sector of the Western High Atlas (Morocco) in the Variscan Ibero-Moroccan frame]. Evora University, 267 pp. https://dspace.uevora.pt/rdpc/handle/10174/11112.
  • Hoepffner, C., Soulaimani, A. & Piquée, A., 2005. The Moroccan Hercynides. Journal of African Earth Sciences 43, 144–165.
  • Holcombe, R.J., 1994. GEOrient – an integrated structural plotting package for MS-Windows. Geological Society of Australia Abstract 36, 73–74.
  • Ibouh, H., Hibti, M., Saidi, A. & Touil, A., 2011. Cu, Mo, W metasomatic deposit at Azegour region (Western High Atlas). Notes et Mémoires du Service Géologique du Maroc 9, 229–233.
  • Irvine, T.N. & Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.
  • Kuno, H., 1968. Differentiation of basalt magmas. [In:] Hess, H.H. & Poldervaart, A. (Eds): Basalts: The Poldervaart treatise on rocks of basaltic composition. Interscience, New York, 623–688.
  • Lagarde, J., 1985. Ductile shear zones and granitic plutons emplacement contemporaneous to the post-Visean Hercynian deformation of the Moroccan Meseta. Hercynica 1, 29–37.
  • Lagarde, J.L. & Choukroune, P., 1982. Ductile shear zones and the syntectonic emplacment of granitoides: the example of the Hercynian massif of the Jebilet (Morocco). Bulletin de la Société Géologique de France 24, 299–307.
  • Landenberger, B. & Collins, W.J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi Complex. Eastern Australia. Journal of Petrology 37, 145–170.
  • Lécuyer, C., Gasquet, D., Allemand, P., Martineau, F. & Martinez, I., 2017. Cooling history of nested plutons from the Variscan Tichka plutonic complex (Morocco). International Journal of Earth Sciences 106, 2855–2872.
  • Li, H., Watanabe, K. & Yonezu, K., 2014. Geochemistry of A-type granites in the Huangshaping polymetallic deposit (South Hunan, China): Implications for granite evolution and associated mineralization. Journal of Asian Earth Sciences 88, 149–167.
  • Liu, Z., Tan, S.C., Wang, G.C., He, X.H. & Ye, H., 2020. Granitic magmas with enriched isotopic compositions, from enriched mantle source: Implications for continental generation. Lithos 360, 105445.
  • Loiselle, M.C. & Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs 11, 468.
  • Loudaoued, I., Touil, A., Aysal, N., Aissa, M., Keskin, M., Yılmaz, I. & Ouadjou, A., 2023. Volcanic rocks from Amensif-Tnirt district in the western High Atlas (Morocco): Geochemistry, magma features and new age dating. Journal of African Earth Sciences 205, 104975.
  • Ludwig, K.R., 2003. User’s manual for Isoplot 3.00. Berkeley Geochronology Center. Special Publication 4, 70 pp.
  • Lugmair, G.W. & Carlson, R.W., 1978. The Sm-Nd history of KREEP. Proceedings of the Ninth Lunar and Planetary Science Conference, Houston, USA, 689–704.
  • Mabkhout, F., Bonin, B., Ait Ayad, N, Sirna, C. & Lagarde, J., 1988. The alkaline granite massifs of the Moroccan Permian. Comptes Rendus de l’Académie des Sciences, Paris, 307, 163–168.
  • Maniar, P.D. & Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–643.
  • Marcoux, E., Breillat, N., Guerrot, C., Négrel, P., Hmima, S.B. & Selby, D., 2019. Multi-isotopic tracing (Mo, S, Pb, Re, Os) and genesis of the MoW Azegour skarn deposit (High-Atlas, Morocco). Journal of African Earth Sciences 155, 109–117.
  • Martínez Catalán, J.R., Schulmann, K. & Ghienne, J.-F., 2021. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Science Reviews 220, 103700.
  • Matte, P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13, 122–128.
  • Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E.C. & Saddiqi, O., 2010. The southwestern branch of the Variscan Belt: evidence from Morocco. Tectonophysics 492, 1–24.
  • Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A. & Gardien, V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154–177.
  • Mrini, Z., Rafi, A., Duthou, J.L. & Vidal, Ph., 1992. Rb-Sr chronology of the Hercynian granitoids of Morocco: Consequences. Bulletin de la Société géologique de France 163, 281–291.
  • O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological Survey Professional Paper B525, 79–84.
  • Pearce, J., 1996. Sources and setting of granitic rocks. Episodes 19, 120–125.
  • Pearce, J.A., Harris, N.G.W. & Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.
  • Peccerillo, A. & Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 63–81.
  • Permingeat, F., 1957. The molybdenum, tungsten and copper deposit of Azegour (Western High Atlas), petrographic and metallogenic studies. Notes et Mémoires du Service Géologique du Maroc, 141 pp.
  • Piqué, A., 1994. Geology of Morocco, regional domains and their structural evolution. Imprimerie El Maarif, El Jadida, 278 pp.
  • Pitcher, W.S., 1983. Granite type and tectonic environment. [In:] K. Hsu (Ed.): Mountain building processes. Academic Press, London, 1940.
  • Proust, F., Petit, J.P. & Tapponnier, P., 1977. The Tizin’Test accident and the role of strike slip in the Western High Atlas tectonics. Bulletin de la Société Géologique de France 7, 541–551.
  • Ribeiro, A., Antunes, M.T., Ferreira, M.P., Rocha, R.B., Soares, A.F., Zbyszewski, G., Moitinho De Almeida, F., Carvalho, D. & Monteiro, J.H., 1979. Introduction to 16 Mohamed Hadani et al.
  • the general geology of Portugal. Serviços Geológicos de Portugal. Lisboa, 114 pp.
  • Rollinson, H., 1995. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, London, 352 pp.
  • Schaer, J.P., 1964. Cambrian volcanism in the Western High Atlas Mountains. Comptes Rendus de l’Académie des Sciences 258, 2114–2117.
  • SGM, 1996. Notes and Memoirs Nº 372, Geological Services, Morocco. Geological map of Amizmiz at a scale of 1:100000. Feuille NH-29-XXII-2.
  • Steiger, R.H. & Jäger, E., 1977. Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–362.
  • Sun, S.S. & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. [In:] Saunders, A.D. & Norry, M.J., (Ed.): Magmatism in the ocean basins. Geological Society, London, Special Publications 42, 313–345.
  • Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H. & Hamamoto, T., 2000. Jndi-1: a neodymium isotopic reference in consistency with lajolla neodymium. Chemical Geology 168, 279–281.
  • Vigneresse, J.L., 1995. Control of granite emplacement by regional deformation. Tectonophysics 249, 173–186.
  • Vonopartis, L.C., Kinnaird, J.A., Nex, P.A. & Robb, L.J., 2021. African A-Type granites: A geochemical review on metallogenic potential. Lithos 396, 106229.
  • Whalen, J.B., 1985. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, PNG. Journal of Petrology 26, 319–327.
  • Whalen, J.B., 1986. Geochemistry of the mafic and volcanic components of the Topsails igneous suite, western Newfoundland. Current Research, Part B. Geological Survey of Canada 86–1B, 121–130.
  • Whalen, J.B. & Currie, K.L., 1984. The Topsails igneous terrane, W. Newfoundland: evidence of magma mixing. Contributions to Mineralogy and Petrology 87, 319–27.
  • Whalen, J.B., Currie, K.L. & Chappell, B.E., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419.
  • White, A.J.R. & Chappell, B.W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoirs 159, 21–34.
  • Zouicha, A., Saber, H., Attari, A.E., Zouheir, T. & Ronchi, A., 2022. Late Hercynian tectonic evolution of the Jebilet Massif (Western Meseta, Morocco) based on tectono-sedimentary analyses of related Permian Continental deposits. Journal of Iberian Geology 48, 377–403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6760313-b540-42a0-8b59-b5b8586d97bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.