PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catenary image enhancement method based on curvelet transform with adaptive enhancement function

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the process of catenary failure diagnosis system based on image processing technique, some catenary images present low contrast, which need to be enhanced. Curvelet transform has the high directional sensitivity and anisotropy, which is suitable for image enhancement because of its optimal sparse representation of image with rich details and edges. First, the catenary image is decomposed by Curvelet transform to get its high and low frequency coefficients, then adjust the high frequency coefficients using the enhancement function. Afterwards, combine the high frequency coefficients and low frequency coefficients by the inverse Curvelet transform, and thus to get the enhanced catenary image. In this paper, Curvelet transform is compared with the traditional enhancement methods. The experimental results show that the proposed method can effectively enhance the low contrast catenary images, the catenary insulator, arm, hanger, pillar and locator part become visible, the details become more obvious. Moreover, as for the online application of catenary failure diagnosis system, efficiency is another important consideration. The experimental results also show that the cost time of catenary image enhancement is within a few tens of seconds, which meets the requirements of catenary failure diagnosis system.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
Bibliografia
  • 1. Routray Sidheswar, Ray Arun Kumar, Mishra Chandrabhanu. Image denoising by preserving geometric components based on weighted bilateral filter and Curvelet transform. Optik. 2018;159:333-343. https://doi.org/10.1016/j.ijleo.2018.01.096
  • 2. Zakeri Fatemeh, Zoej Mohammad Javad Valadan. Adaptive method of speckle reduction based on Curvelet transform and thresholding neural network in synthetic aperture radar images. Journal of Applied Remote Sensing.2015; 9(1).095043:1-11. https://doi.org/10.1117/1.JRS.9.095043
  • 3. Hajizadeh Ali R, Salajegheh Javad, Salajegheh, Eysa. Performance evaluation of wavelet and Curvelet transforms based-damage detection of defect types in plate structures. Structural Engineering and Mechanics.2016;60(4):667-691. https://doi.org/10.12989/sem.2016.60.4.667
  • 4. Khoje Suchitra, Bodhe Shrikant. Comparative performance evaluation of discrete fast Curvelet transform and colour texture moments as texture features for fruit skin damage detection. Journal of Food Science and Technology. 2015;52(11):6914-6926. https://doi.org/10.1007/s13197-015-1794-3
  • 5. Tankasala Sriram Pavan, Doynov Plamen, Chrihalmeanu Simona, Derakhshani, Reza. Ocular surface vasculature recognition using Curvelet transform. IET Biometrics. 2017; 6(2): 97-107. http://dx.doi.org/10.1049/iet-bmt.2015.0091
  • 6. Elaiwat S., Bennamoun M., Boussaid F., El-Sallam A. A Curvelet-based approach for textured 3D face recognition. Pattern Recognition.2015;48(4): 1231-1242. https://doi.org/10.1016/j.patcog.2014.10.013
  • 7. Sethi Gaurav, Saini Barjinder S. Computer-aided abdomen disease diagnosis using Curvelet- based texture analysis with progressive classification. International Journal of Biomedical Engineering and Technology.2016;21(4):322-342. https://doi.org/10.1504/IJBET.2016.078335
  • 8. Zhang Ao, Gao Xianwen. Fault diagnosis of sucker rod pumping systems based on Curvelet transform and sparse multi-graph regularized extreme learning machine. International Journal of Computational Intelligence Systems. 2018;11(1):428-437. https://doi.org/10.2991/ijcis.11.1.32
  • 9. Bhargavi V. Ratna, Senapati Ranjan K. Curvelet fusion enhacement based evaluation of diabetic retinopathy by the identification of exudates in optic color fundus images. Biomedical EngineeringApplications, Basis and Communications. 2016; 28 (6).1650046:1-10. https://doi.org/10.4015/S1016237216500460
  • 10. Gupta Kamlesh, Gupta Ranu. Novel approach for image compression using Curvelet transform. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2015;8(7):199- 212. http://dx.doi.org/10.14257/ijsip.2015.8.7.19
  • 11. Kim WH, Nam SH, Lee HK. Blind Curvelet watermarking method for high-quality images. Electronics Letters.2017;53(19):1302-1304. https://dx.doi.org/10.1049/el.2017.0955
  • 12. Umamaheswara Raju RS, Ramesh R, Raju V Ramachandra, Mohammad Sharfuddin. Curvelet transforms and flower pollination algorithm based machine vision system for roughness estimation. Journal of Optics, 2018;47(2):243-250. https://doi.org/10.1007/s12596-018-0457-y
  • 13. Subhedar Mansi S, Mankar Vijay H. Curvelet transform and cover selection for secure steganography. Multimedia Tools and Applications. 2018;77(7):8115-8138. https://doi.org/10.1007/s11042-017-4706-x
  • 14. Miri Mohammad Saleh, Mahloojifar Ali. Retinal image analysis using Curvelet transform and multistructure elements morphology by reconstruction. IEEE Transactions on Biomedical Engineering.2011.58(5): 1183-1192. https://doi.org/10.1109/TBME.2010.2097599
  • 15. Berraho Sanae, Margae Samira El, Ait Kerroum Mounir, Fakhri, Youssef. Texture classification based on Curvelet transform and extreme learning machine with reduced feature set. Multimedia Tools and Applications.2017.76(18): 18425-18448. https://doi.org/10.1007/s11042-016-4174-8
  • 16. Karthik R, Menaka R, Chellamuthu C. A comprehensive framework for classification of brain tumour images using SVM and Curvelet transform. International Journal of Biomedical Engineering and Technology.2015;17(2):168-177. https://doi.org/10.1504/IJBET.2015.068054
  • 17. Muhammad Bashir, Abu-Bakar Abd Rahman. Face detection in profile views using fast discrete Curvelet transform (FDCT) and support vector machine (SVM). International Journal on Smart Sensing and Intelligent Systems.2016;9(1):108-123. 10.21307/ijssis-2017-862
  • 18. Chhatrala R, Jadhav D. Gait recognition based on Curvelet transform and PCANet. Pattern Recognition and Image Analysis. 2017;27(3):525-531. https://doi.org/10.1134/S1054661817030075
  • 19. Ma Jianwei, Plonka Gerlind. The Curvelet Transform. IEEE Signal Processing Magazine. 2010; 27(2):118- 133. http://dx.doi.org/10.1109/MSP.2009.935453
  • 20. Li Jia. Application of image enhancement method for digital images basedon Retinex theory. Optik. 2013;124(23):5986-5988. https://doi.org/10.1016/j.ijleo.2013.04.115
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49593589-ff5d-49c6-95f3-ed21e674e7fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.