PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption of Diphenolic acid (DPA), 2,4-Dichlorophenoxyacetic acid (2,4-D), and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were examined in aqueous solution using activated carbon rice straw. The rice straw was activated by using two reagents, zinc chloride and phosphoric acid and named as RSZ, RSP, respectively. The results showed that both carbons have a relatively high adsorption capacity. Concerning the adsorption kinetic, the second-order model has better fit than the first model to experimental data. The adsorption yield of both carbons increased in the order: DPA < 2,4-D < MCPA. The pore volume diffusion model satisfactorily fitted the experiment on both carbons. Furthermore, solution pH has a high influence on the adsorption capacity for both carbons. The adsorption mechanism of selected pollutants onto carbon samples has been controlled by dispersion interaction π-π electrons and electrostatic interaction, moreover, the contribution of pore volume diffusion is the controlling mechanism of the overall rate of adsorption.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr 45. poz., rys., tab.
Twórcy
  • Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519, Zagazig, Egypt
  • Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi, 11911, Ar Riyadh, Saudi Arabia
  • Inorganic Chemistry Department, Faculty of Science, Granada University, 18071, Granada, Spain
  • Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, 44519, Zagazig, Egyp
autor
  • Microbiology Department, Faculty of Science, Suez University, Suez, Egypt
autor
  • Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519, Zagazig, Egypt
Bibliografia
  • 1. Serrano, R., Portolés, T., Blanes, M.A., Hernández, F., Navarro, J.C., Varó, I. & Amat, F. (2012). Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to highresolution time-of-flight mass spectrometry, Sci. Total Environ. 433, 161–168. DOI: 10.1016/j.scitotenv.2012.06.042.
  • 2. Moreno-González, R., Campillo, J.A., García, V. & León, V.M. (2013). Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 92, 247–257. DOI: 10.1016/j.chemosphere.2012.12.022.
  • 3. Orton, F., Lutz, I., Kloas, W. & Routledge, E.J. (2009). Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence, Sci. Total Environ. 43(6), 2144–2150. DOI: 10.1021/es8028928.
  • 4. Han, D., Jia, W. & Liang, H. (2010). Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularlyimprinted amino-functionalized silica gel sorbent, J. Environ. Sci. 22(2), 237–241. DOI: 10.1016/S1001-0742(09)60099-1.
  • 5. Aksu, Z. & Kabasakal, E. (2004) Batch adsorption of 2,4-Dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol. 35, 223–240. DOI: 10.1016/S1383-5866(03)00144-8.
  • 6. Peixoto, F.P., Lopes, M.L., Madeira, V.M.C. & Vicente, J.A.F. (2009). Toxicity of MCPA on non-green potato tuber calli, Acta Physiol. Plant. 31, 103–109. DOI 10.1007/s11738-008-0207-x.
  • 7. Cerbai, B., Solaro, R. & Chiellini, E. (2008). Synthesis and characterization of functionalpolyesters tailored for biomedical applications. J. Polym. Sci. A1. 46, 2459–2476. DOI: 10.1002/pola.22579.
  • 8. Zhang, R. & Moore, J.A. (2003). Synthesis, characterization and properties of polycarbonate containing carboxyl side groups, Macromol. Symp. 199, 375–390. DOI: 10.1002/masy.200350932.
  • 9. Gültekin, I. & Ince, N.H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes, J. Environ. Manage 85, 816–832. DOI: 10.1016/j.jenvman.2007.07.020.
  • 10. Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G. & Marino, A. (2004). Analytical methodologies for determining the occurence of endocrine disrupting chemicals in sewage treatment plants and natural waters, Anal. Chim. Acta 501, 79–88. DOI: 10.1016/j.aca.2003.09.020.
  • 11. Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G. & Rocher, V. (2016). Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors infl uencing the adsorption of micropollutants in wastewater, J. Environ. Chem. Eng. 4, 1102–1109. DOI: 10.1016/j.jece.2016.01.018.
  • 12. Ocampo-Pérez, R., Abdel daiem, M.M., Rivera-Utrilla, J., Méndez-Díaz, J.D. & Sánchez-Polo M. (2012). Modeling adsorption rate of organic micropollutants present in landfi ll leachates onto granular activated carbon, J. Colloid Interf. Sci. 385, 174–182. DOI: 10.1016/j.jcis.2012.07.004.
  • 13. Abdel daiem, M.M., Rivera-Utrilla, J., Ocampo-Pérez, R., Sánchez-Polo, M. & López-Peñalver, J.J. (2013). Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds, Chem. Eng. J. 219, 371–379. DOI: 10.1016/j.cej.2012.12.069.
  • 14. Rivera-Utrilla, J., Sánchez-Polo, M., Abdel daiem, M.M. & Ocampo-Pérez, R. (2012). Role of activated carbon in the photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by the UV/TiO2/activated carbon system, Appl. Catalysis–B: Environ. 126, 100–107. DOI: 10.1016/j.apcatb.2012.07.015.
  • 15. Tchaikovskaya, O.N., Karetnikova, E.A., Sokolova, I.V., Mayer, G.V. & Shvornev, D.A. (2012). The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water. J. Photoch. Photobio. A 228, 8–14. DOI: 10.1016/j.jphotochem.2011.11.004.
  • 16. Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P.M., Alvim-Ferraz, M.C.M. & Dias, J.M. (2011). Activated carbon modifi cations to enhance its water treatment applications. An overview. J. Hazard. Mater. 187, 1–23. DOI: 10.1016/j.jhazmat.2011.01.033.
  • 17. Daifullah, A.A.M., Yakout, S.M. & Elreefy, S.A. (2007). Adsorption of fl uoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater. 147, 633–643. DOI: 10.1016/j.jhazmat.2007.01.062.
  • 18. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manage. 85 (2007) 833–846
  • 19. Hameed, B.H., Salman, J.M. & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater. 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.
  • 20. Said, N., El-Shatoury, S.A., Díaz, L.F. & Zamorano, M. (2013). Quantitative appraisal of biomass resources and their energy potential in Egypt, Renew. Sust. Energ. Rev. 24, 84–91. DOI: 10.1016/j.rser.2013.03.014.
  • 21. Ahmedna, M., Marshall, W.E. & Rao, R.M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol. 71, 113–123. DOI: 10.1016/S0960-8524(99)00070-X.
  • 22. Said, N., Bishara, T., García-Maraver, A. & Zamorano, M. (2013). Effect of water washing on the thermal behavior of rice straw, Waste Manage. 33, 2250–256. DOI: 10.1016/j.wasman.2013.07.019.
  • 23. Bautista-Toledo, M.I, Méndez-Díaz, J.D., Sánchez-Polo, M., Rivera-Utrilla, J. & Ferro-García, M.A. (2008). Adsorption of sodium dodecylbenzenesulfonate on activated carbons: Effects of solution chemistry and presence of bacteria, J. Colloid Interf. Sci. 317, 11–17. DOI: 10.1016/j.jcis.2007.09.039.
  • 24. Rivera-Utrilla, J. & Sánchez-Polo, M. (2004). Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons, Langmuir 20, 9217–9222. DOI: 10.1021/la048723+.
  • 25. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M.A. & Moreno-Castilla, C. (2003). Bioadsorption of Pb (II), Cd (II), and Cr (VI) on activated carbon from aqueous solutions, Carbon 41, 323–330. DOI: 10.1016/S0008-6223(02)00293-2.
  • 26. Leyva-Ramos, R. & Geankoplis, C.J. (1985). Model simulation and analysis of surface diffusion of liquid in porous solids, Chem. Eng. Sci. 40(5), 799–807. DOI: 10.1016/0009-2509(85)85032-6.
  • 27. Leyva-Ramos, R. & Geankoplis, C.J. (1994). Diffusion in liquid fi lled pores of activated carbon, I: pore volumen diffusion, Can. J. Chem. Eng. 72(2), 262–271. DOI: 10.1002/cjce.5450720213.
  • Bereitgestellt von West-Pomeranian University of Technology Szczecin - Biblioteka Glówna Zachodniopomorskiego | Heruntergeladen 13.01.20 10:33 UTC 12 Pol. J. Chem. Tech., Vol. 21, No. 4, 2019
  • 28. Choong, T.S.Y., Wong, T.N., Chuah, T.G. & Idris, A. (2006). Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interf. Sci. 301(2), 436–440. DOI: 10.1016/j.jcis.2006.05.033.
  • 29. Schiesser, W.E. & Silebi, C.A. (1997). Computational Transport Phenomena. Numerical Methods for the solution of Transport Problems 1995–1997: Cambridge University Press: Cambridge, U.K.
  • 30. Méndez-Díaz, J.D., Abdel daiem, M.M., Rivera-Utrilla, J., Sánchez-Polo, M. & Bautista-Toledo, I. (2012). Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons, J. Colloid Interf. Sci. 369, 358–365. DOI: 10.1016/j.jcis.2011.11.073.
  • 31. Rivera-Utrilla, J., Prados-Joya, G., Sánchez-Polo, M., Ferro-García, M.A. & Bautista-Toledo, I. (2009). Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater. 170, 298–305. DOI: 10.1016/j.jhazmat.2009.04.096.
  • 32. De Lange, M.F., Vlugt, T.J.H., Gascon, J. & Kapteijn, F. (2014). Adsorptive characterization of porous solids: Error analysis guides the way, Micropor Mesopor Mat. 200, 199–215, DOI: 10.1016/j.micromeso.2014.08.048.
  • 33. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D. & Fernández-Pereira, C. (2008). Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42–50. DOI: 10.1016/j.cej.2008.01.007.
  • 34. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F. & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111, 185–190. DOI: 10.1016/j.biortech.2012.02.010.
  • 35. Giles, C.H., Smith, D. & Huitson, A. (1974). A General treatment and classifi cation of the solute adsorption isotherm I. Theoretical, J. Colloid Interf. Sci. 47, 755–765. DOI: 10.1016/0021-9797(74)90252-5.
  • 36. Giles, C.H., D’Silva, A.P. & Easton, I.A. (1974). A general treatment and classifi cation of the solute adsorption isotherm Part II. Experimental Interpretation, J. Colloid Interf. Sci. 47, 766–778. DOI: 0.1016/0021-9797(74)90253-7.
  • 37. Noll, K.E., Gounaris, V. & Hou, W.S. (1992). Adsorption Technology for Air and Water Pollution Control (1st ed.). Michigan, USA: Lewis Publishers
  • 38. Poling, B.E., Prausnitz, J.M. & O’Connell, J.P. (2001). The Properties of Gases and Liquids (5th ed.) New York, USA: McGraw-Hill Companies.
  • 39. Furusawa, Y. & Smith, J.M. (1973). Fluid-Particle and Intraparticle Mass Transport Rates in Slurries. Ind. Eng. Chem. Fundamen. 12 (2), 197–203. DOI: 10.1021/i160046a009.
  • 40. Ruthven, D.M. (1984). Principles of adsorption and adsorption processes; New Brunswick University: Fredericton, Canada.
  • 41. Do, D.D. (1998). Adsorption analysis: Eguilibria and kinetics; Queensland University Press: Queensland, Australia.
  • 42. Suzuki, M. (1990). Adsorption Engineering; Tokyo University Press: Tokyo, Japan.
  • 43. Leyva-Ramos, R., Rivera-Utrilla, J., Medellín-Castillo, N.A. & Sánchez-Polo, M. (2009). Kinetic modelling of naphthalenesulphonic acid adsorption from aqueous solution onto untreated and ozonated activated carbons, Adsorpt. Sci. Technol. 27 (4), 395–411. DOI: 10.1260/026361709790252650.
  • 44. López-Ramón, V., Moreno-Castilla, C., Rivera-Utrilla, J. & Radovic, L.R. (2003). Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons, Carbon, 2020–2022. DOI: 0.1016/S0008-6223(03)00184-2.
  • 45. Barton, S.S., Evans, M.J.B. & MacDonald, J.A.F. (1994). Adsorption of water vapor on nonporous carbon. Langmuir 10, 4250–4252. DOI: 10.1021/la00023a055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb4820b-7925-40df-8e78-95a4c6896214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.