PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of constant and stable main transition velocity in bubble column reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie stałej i stabilnej prędkości przejściowej w reaktorach barbotażowych
Języki publikacji
EN
Abstrakty
EN
This work presents new results about the reliable identification of the main transition velocity Utrans-1 in different bubble columns (0.1 – 0.46 m in inner diameter) equipped with several perforated plate gas distributors. Two different gas-liquid systems (air-water and air-therminol LT) have been used. The most important finding in this work is that Utrans-1 (end of the homogeneous regime) occurs at 0.04 m·s-1 irrespective of the operating conditions studied. For the Utrans-1 identification, the following parameters have been used: Kolmogorov and reconstruction entropies, degree of randomness and information entropy.
PL
W pracy przedstawiono nowe wyniki dotyczące wiarygodnej identyfikacji głównej prędkości przejścia Utrans-1 w różnych kolumnach barbotażowych (o średnicy wewnętrznej 0,1 - 0,46 m) wyposażonych w kilka dystrybutorów gazu typu płyta perforowana. Zastosowano dwa różne układy gaz-ciecz (powietrzewoda i powietrze-therminol LT). Najważniejszym odkryciem w tej pracy jest to, że Utrans-1 (koniec reżimu przepływu homogenicznego) występuje dla prędkości 0,04 m·s-1 niezależnie od badanych warunków pracy. Do identyfikacji Utrans-1 wykorzystano następujące parametry: entropię Kołmogorowa, entropię rekonstrukcyjną, stopień losowości oraz entropię informacji.
Rocznik
Tom
Strony
9--27
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Vial, Ch., Lainé, R., Poncin, S., Midoux, N., Wild, G., 2001. Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column. Chem. Eng. Sci., 56, 1085-1093.
  • [2] Shah, Y. T., Kelkar, B. G., Godbole, S. P., Deckwer, W.-D., 1978. Design Parameters Estimations for Bubble Column Reactors. AIChE J., 28, 353-379.
  • [3] Leonard, C., Ferrasse, J.-H., Boutin, O., Lefevre, S., Viand, A., 2005. Bubble column reactors for high pressures and high temperatures operation. Chem. Eng. Res. Des., 100, 391-421. http://dx.doi.org/10.1016/j.cherd.2015.05.013.
  • [4] Ruzicka, M. C., Zahradnik, J., Drahoš, J., Thomas, N. H., 2001. Homogeneous-heterogeneous regime transition in bubble columns. Chem. Eng. Sci., 56, 4609-4626.
  • [5] Simmonet, M., Gentric, C., Olmos, E., Midoux, N., 2008. CFD simulation of the flow field in a bubble column reactor: importance of the drag force formulation to describe regime transitions. Chem. Eng. & Process., 47, 1726-1737.
  • [6] Diaz, M. E., Montes, F. J., Galán, M. A., 2008. Experimental study of the transition between unsteady flow regimes in a partially aerated two-dimensional bubble column. Chem. Eng. & Process., 47, 1867-1876.
  • [7] Im, H., Park, J., Lee, J. W., 2019. Prediction of main regime transition with variations of gas and liquid phases in a bubble column. ACS Omega, 4, 1329-1343.
  • [8] Chen, R. C., Reese, J., Fan, L.-S., 1994. Flow structure in a three-dimensional bubble column and three-phase fluidized bed. AIChE J., 40, 1093-1104.
  • [9] Riquarts, H. P., 1979. Model representation of homogeneous and heterogeneous two-phase flow in fluidized beds and bubble columns. Germ. Chem. Eng., 2, 268-274.
  • [10] Joshi, J. B., Lali, A. M., 1984. Velocity-hold up relationship in multiphase contactors-a unified approach. Frontier in Chem. Reac. Eng., 1, 314-329.
  • [11] Gharat, S. D., Joshi, J. B., 1992. Transport phenomena in bubble column reactors II. Chem. Eng. J., 48, 153-166.
  • [12] Krishna, R., Wilkinson, P. M., Van Dierendonck, L. L., 1991. A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions. Chem. Eng. Sci., 46, 2491-2496.
  • [13] Shnip, A. I., Kolhatkar, R. V., Swamy, D., Joshi, J. B., 1992. Criteria for the transition from the homogeneous to the heterogeneous regime in two-dimensional bubble column reactors. Int. J. Multiphase Flow, 17, 18, 705-726.
  • [14] Mudde, R. F., Lee, D. J., Reese, J., Fan, L.-S., 1997. Role of coherent structures on Reynolds stresses in a 2-D bubble column. AIChE J., 43, 913-926.
  • [15] Joshi, J. B., Axial mixing in multiphase contactors: a unified correlation. Trans. Inst. Chem. Eng., 58, 155-165.
  • [16] Devanathan, N., Dudukovic, M. P., Lapin, A., Lubbert, A., 1995. Chaotic flow in bubble column reactors. Chem. Eng. Sci., 50, 2661-2667.
  • [17] Franz, K., Borner, T., Kantorek, H. J., Buchholz, R., 1984. Flow structures in bubble columns. Germ. Chem. Eng., 7, 365-374.
  • [18] Wilkinson, P. M., Spek, A. P., Van Dierendonck, L. L., 1992. Design parameters estimation for scale up of high pressure bubble columns. AIChE J., 38, 544-554.
  • [19] Reilly, I. G., Scott, D. S., De Bruijn, T. J. W., MacIntyre, D., 1994. The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations. Can. J. Chem. Eng., 72, 3-12.
  • [20] Besagni, G., Inzoli, F., 2017. Novel gas holdup and regime transition correlation for two-phase bubble columns. J. Phys.: Conf. Ser., 923, 012011.
  • [21] Letzel, H. M., Schouten, J. C., Krishna, R., Van den Bleek, C. M., 1997. Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure fluctuations. Chem. Eng. Sci., 52, 4447-4459.
  • [22] Van den Bleek, C. M., Schouten, J. C., 1993. Deterministic chaos: a new tool in fluidized bed design and operation. Chem. Eng. J., 53, 75-87.
  • [23] Schouten, J. C., Takens, F., Van den Bleek, C. M., 1994. Maximum-likelihood estimation of the entropy of an attractor, Phys. Rev. E Stat. Phys Plasmas Fluids Relat. Interdisc. Top., 49, 126-129.
  • [24] Nedeltchev, S., Top, Y., Hlawitschka, M., Schubert, M., Bart, H.-J., 2020. Identification of the regime boundaries in bubble columns based on the degree of randomness in the signals. Can. J. Chem. Eng., 98, 1607-1621. DOI:10.1002/cjce.23719.
  • [25] Nedeltchev, S., Shaikh, A., 2013. A new method for identification of the main transition velocities in multiphase reactors based on information entropy theory. Chem. Eng. Sci., 100, 2-14. http://dx.doi.org/10.1016/j.ces.2013.03.039.
  • [26] Nedeltchev, S., 2015. New methods for flow regime identification in bubble columns and fluidized beds. Chem. Eng. Sci., 137, 436-446. http://dx.doi.org/10.1016/j.ces.2015.06.054.
  • [27] Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2006. Flow regime identification in a bubble column based on both statistical and chaotic parameters applied to computed tomography data. Chem. Eng. & Techn. 29, 1054-1060. DOI: 10.1002/ceat.200600162.
  • [28] Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2011. Flow regime identification in a bubble column via nuclear gauge densitometry and chaos analysis. Chem. Eng. Technol., 34, 225-233. 10.1002/ceat.201000308.
  • [29] Nedeltchev, S., Schubert, M., Hampel, U., 2017. Extraction of information and reconstruction entropies from ultrafast X-ray tomography data in a bubble column. Chem. Eng. Sci., 170, 225-233. http://dx.doi.org/10.1016/j.ces.2017.03.020.
  • [30] Hyndman, C. L., Larachi, F., Guy, C., 1997. Understanding gas-phase hydrodynamics in bubble columns: a convective model based on kinetic theory. Chem. Eng. Sci., 52, 63-77.
  • [31] Zahradnik, J., Fialova, M., 1996. The effect of bubbling regime on gas and liquid phase mixing in bubble column reactors. Chem. Eng. Sci., 51, 2491-2500.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3b0cd52-7bf4-4426-bce6-198f27f644df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.