Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The overall aim of the presented paper was to identify the main areas of application of artificial intelligence in advertising activities. Design/methodology/approach: In order to realise the objectives of this paper, it was decided to use two research methods: bibliometric analysis and a multiple case study. First, a quantitative analysis of the resources of the Scopus and Web of Science databases was carried out, which was used to isolate the main research areas concerning the application of artificial intelligence in advertising. Next, examples of advertisements from the business world that use artificial intelligence were searched for and assigned to each research area. In the final phase, the case studies were related to the results of a qualitative analysis of the literature exported during bibliometric research. Findings: With capabilities such as analysing, automating, creating and optimising, AI systems can have a variety of applications in advertising. In particular, they are used to monitor trends, targeting, behavioural prediction, personalisation, creation, audience interaction and engagement. Research limitations/implications: The article contains a preliminary study. In the future it is planned to conduct additional quantitative and qualitative research. Practical implications: The conclusions of the study can serve to better understand the relevance of artificial intelligence for the advertising industry and the practical possibilities of its use. The results of the study can be used both in market practice and as inspiration for further research in this area. Originality/value: The article demonstrates the specificity of artificial intelligence in relation to promotion. The research uses examples from business practice.
Rocznik
Tom
Strony
9--23
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- Cracow University of Economics
autor
- Cracow University of Economics
Bibliografia
- 1. Abou Ali, A., Abbass, A., Farid, N. (2020). Factors Influencing Customers’ Purchase Intention in Social Commerce. International Review of Management and Marketing, 10(5), 63-73. doi: 10.32479/irmm.10097
- 2. Aguilar, J., Garcia, G. (2018). An Adaptive Intelligent Management System of Advertising for Social Networks: A Case Study of Facebook. IEEE Transactions on Computational Social Systems, Vol. 5, No. 1, pp. 20-32, doi: 10.1109/TCSS.2017.2759188
- 3. Ahmed, A., Das, A., Smola, A.J. (2014). Scalable hierarchical multitask learning algorithms for conversion optimization in display advertising. WSDM '14: Proceedings of the 7th ACM international conference on Web search and data mining, pp. 153-162, doi: 10.1145/2556195.2556264
- 4. AI Expert. Retrieved from: https://aiexpert.network/case-study-starbucks-revolutionizes-the-coffee-experience-with-ai/, 7.05.2024.
- 5. Bajak, M., Spendel, Ł. (2022). Building Consumer Engagement and Loyalty while Traversing the Customer Journey in the Online Space. Scientific Papers of Silesian University of Technology – Organization and Management Series, Vol. 160, pp. 39-52, doi: 10.29119/1641-3466.2022.160.3
- 6. Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners. Ottawa: Apress.
- 7. Bonnefon, J.-F., Shariff, A., Rahwan, I. (2016). The social dilemma of autonomous vehicles. Science, Vol. 352, Iss. 6293, pp. 1573-1576, doi: 10.1126/science.aaf2654
- 8. Braca, A., Dondio, P. (2023). Persuasive communication systems: a machine learning approach to predict the effect of linguistic styles and persuasion techniques. Journal of Systems and Information Technology, 25(2), 160-191. doi: 10.1108/JSIT-07-2022-0166
- 9. Carroll, M., Chan, A., Ashton, H., Krueger, D. (2023). Characterizing Manipulation from AI Systems. Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO '23). Association for Computing Machinery. New York, NY, USA, 6, 1-13. doi: 10.1145/3617694.3623226
- 10. CCC. Retrieved from: https://corporate.ccc.eu/en/halfprice-first-in-poland-to-launch-campaign-co-created-by-ai, 6.05.2024.
- 11. Chandra, S., Verma, S., Lim, W.M., Kumar, S., Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. Psychology and Marketing, Vol. 39, Iss. 8, pp. 1529-1562, doi: 10.1002/mar.21670
- 12. Choi J.A., Lim K. (2020). Identifying machine learning techniques for classification of target advertising. ICT Express, Vol. 6, Iss. 3, pp. 175-180, doi: 10.1016/j.icte.2020.04.012
- 13. Coca-Cola company. Retrieved from: https://www.coca-colacompany.com/media-center/coca-cola-creations-imagines-year-3000-futuristic-flavor-ai-powered-experience, 6.05.2024.
- 14. Daase, C., Volk, M., Staegemann, D., Turowski, K. (2023). The Future of Commerce: Linking Modern Retailing Characteristics with Cloud Computing Capabilities. Proceedings of the 25th International Conference on Enterprise Information Systems - Volume 2: ICEIS, 418-430. DOI: 10.5220/0011859600003467
- 15. Dao, T.H., Jeong, S.R., Ahn, H. (2012). A novel recommendation model of location-based advertising: Context-Aware Collaborative Filtering using GA approach. Expert Systems with Applications, Vol. 39, Iss. 3, pp. 3731-3739 doi: 10.1016/j.eswa.2011.09.070
- 16. Diapouli, M., Kapetanakis, S., Petridis, M., Evans, R. (2017). Behavioural Analytics using Process Mining in On-line Advertising. International Conference on Case-Based Reasoning, 132843, 147-156.
- 17. Ding, X., Liu, T., Duan, J., Nie, J.-Y. (2015). Mining User Consumption Intention from Social Media Using Domain Adaptive Convolutional Neural Network. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), 2389-2395. doi: 10.1609/aaai.v29i1.9529
- 18. Diwanji, V.S., Lee, J., Cortese, J. (2023). Future-proofing Search Engine Marketing: An Empirical Investigation of Effects of Search Engine Results on Consumer Purchase Decisions. Journal of Strategic Marketing, pp. 1-21, doi: 10.1080/0965254X.2022.2148269
- 19. Ejdys, J. (2016). Problematyka społecznej odpowiedzialności biznesu jako obiekt naukowych zainteresowań - wyniki analizy bibliometrycznej. Przegląd Organizacji, Vol. 4, pp. 36-44, doi: 10.33141/po.2016.04.06
- 20. Eobuwie. Retrieved from: https://eobuwie.com.pl/b/esizeme, 7.05.2024.
- 21. Gao, B., Wang, Y., Xie, H., Hu, Y., Hu, Y. (2023). Artificial Intelligence in Advertising: Advancements, Challenges, and Ethical Considerations in Targeting, Personalization, Content Creation, and Ad Optimization. Sage Open, Vol. 13, Iss. 4, doi: 10.1177/21582440231210759
- 22. Garnelo, M., Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Current Opinion in Behavioral Sciences, Vol. 29, pp. 17-23, doi: 10.1016/j.cobeha.2018.12.010
- 23. Goldenberg, Y., Solomon, S., Mazursky, D. (1996) Cluster concept dynamics leading to creative ideas without critical slowing down. International Journal of Modern Physics C, Vol. 7, Iss. 5, pp. 655-673, doi: 10.1142/S0129183196000557
- 24. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., Candela, J.Q. (2014). Practical lessons from predicting clicks on ads at Facebook. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, doi: 10.1145/2648584.2648589
- 25. Huang, L., Li, R., Lei, J., Ji, Y., Feng, G., Shi, W., Yang, S. (2024). Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation. International Journal of Computational Intelligence Systems, Vol. 17, Iss. 1, doi: 10.1007/s44196-024-00408-9
- 26. Instreamatic. Retrieved from: https://instreamatic.medium.com/case-study-mazdas-campaign-used-continuous-dialogue-ads-to-engage-listeners-for-its-new-c7665a4e48da, 7.06.2024
- 27. Janiesch, C., Zschech, P. Heinrich, K. (2021). Machine learning and deep learning. Electronics Markets, Vol. 31, pp. 685-695, doi: 10.1007/s12525-021-00475-2
- 28. Jones, V.K. (2018). Voice-activated change: Marketing in the age of artificial intelligence and virtual assistants. Journal of Brand Strategy, 7(3), 233-245.
- 29. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C. J. (2016). Field-aware factorization machines for CTR prediction. RecSys 2016 - Proceedings of the 10th ACM Conference on Recommender Systems, pp. 43-50, doi: 10.1145/2959100.2959134
- 30. Kim, J.W., Lee, B.H., Shaw, M. J., Chang, H.L., Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, Vol. 5, Iss. 3, pp. 45-62, doi: 10.1080/10864415.2001.11044215
- 31. Kim, H., Park, M. (2024). When digital celebrity talks to you: How human-like virtual influencers satisfy consumer's experience through social. Journal of Retailing and Consumer Services, 76, 103581. doi: 10.1016/j.jretconser.2023.103581
- 32. Lambrecht, A., Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of stem career ads. Management Science, Vol. 65, Iss. 7, pp. 2966-2981, doi: 10.1287/mnsc.2018.3093
- 33. Laux, J., Stephany, F., Russell, C., Wachter, S., Mittelstadt, B. (2022). The Concentration-after-Personalisation Index (CAPI): Governing effects of personalisation using the example of targeted online advertising. Big Data & Society, 9(2). doi: 10.1177/20539517221132535
- 34. Lingying, W., Wen, L., Mingde, G. (2022). Study on Optimization of Marketing Communication Strategiesin the Era of Artificial Intelligence. Mobile Information Systems, doi: 10.1155/2022/1604184
- 35. Litslink. Retrieved from: https://litslink.com/blog/all-about-netflix-artificial-intelligence-the-truth-behind-personalized-content, 7.05.2024.
- 36. Lu, C. (2024). Rethinking artificial intelligence from the perspective of interdisciplinary knowledge production. AI & Society, doi: 10.1007/s00146-023-01839-2
- 37. Mcmahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkelsson, A.M., Boulos, T., Kubica, J. (2013). Ad click prediction: A view from the trenches. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. F128815, pp. 1222-1230, doi: 10.1145/2487575.2488200
- 38. Miralles-Pechuán, L., Ponce, H., Martínez-Villaseñor, L. (2018). A novel methodology for optimizing display advertising campaigns using genetic algorithms. Electronic Commerce Research and Applications, Vol. 27, pp. 39-51, doi: 10.1016/j.elerap.2017.11.004
- 39. Molares-Cardoso, J., Badenes-Plá, V., Maiz-Bar, C. (2024). Human Creativity vs. Artificial Creativity: Comparative Study between University Students and Chatbots in Idea Generation. Palabra Clave, Vol. 27, Iss. 1, pp. 1-27, doi: 10.5294/pacla.2024.27.1.10
- 40. Mondal, S., Das, S., Vrana, V.G. (2023). How to Bell the Cat? A Theoretical Review of Generative Artificial Intelligence towards Digital Disruption in All Walks of Life. Technologies, Vol. 11, Iss. 2, No. 44, doi: 10.3390/technologies11020044
- 41. NIKE. Retrieved from: https://www.nike.com/nike-by-you, 6.05.2024.
- 42. Olczyk, M. (2016). Analiza bibliometryczna badań nad konkurencyjnością międzynarodową. Studia Ekonomiczne, Vol. 271. Uniwersytet Ekonomiczny w Katowicach, pp. 126-137, doi: 10.15611/pn.2015.401.31
- 43. Ramu, V.B., Yeruva, A.R. (2023). Optimising AIOps system performance for e-commerce and online retail businesses with the ACF model. International Journal of Intellectual Property Management, 13(3/4), 412-429. doi: 10.1504/IJIPM.2023.134064
- 44. Sánchez-Núñez, P., Cobo, M.J., Heras-Pedrosa, C.D.L., Peláez, J.I., Herrera-Viedma, E. (2020). Opinion Mining, Sentiment Analysis and Emotion Understanding in Advertising: A Bibliometric Analysis. IEEE Access, 8, 134563-134576. doi: 10.1109/ACCESS.2020. 3009482
- 45. Schultz, C.D., Koch, C., Olbrich, R. (2024). Dark sides of artificial intelligence: The dangers of automated decision-making in search engine advertising. Journal of the Association for Information Science and Technology, 75(5), 550-566. doi: 10.1002/asi.24798
- 46. Shameem, A., Ramachandran, K.K., Sharma, A., Singh, R., Selvaraj, F.J., Manoharan, G. (2023). The Rising Importance of AI in Boosting the Efficiency of Online Advertising in Developing Countries. 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida, India, pp. 1762-1766. doi: 10.1109/ICACITE57410.2023.10182754
- 47. Sharakhina, L., Ilyina, I., Kaplun, D. et al. (2023). AI technologies in the analysis of visual advertising messages: survey and application. Journal of Marketing Analytics. doi: 10.1057/s41270-023-00255-1
- 48. Smith, K.T. (2018). Marketing via smart speakers: what should Alexa say? Journal of Strategic Marketing, 28(4), 350-365. doi: 10.1080/0965254X.2018.1541924
- 49. Starbucks company. Retrieved from: https://stories.starbucks.com/stories/2020/how-starbucks-plans-to-use-technology-to-nurture-the-human-spirit/, 6.05.2024
- 50. Theus, N. (2016). Information literacy – analiza bibliometryczna. Bibliotekarz, Vol. 6, pp. 4-8.
- 51. Turner Lee, N. (2018). Detecting racial bias in algorithms and machine learning. Journal of Information, Communication and Ethics in Society, Vol. 16, Iss. 3, pp. 252-260, doi: 10.1108/JICES-06-2018-0056
- 52. van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L. (2023). ChatGPT: five priorities for research. Nature, Vol. 614, Iss. 7947, pp. 224-226, doi: 10.1038/d41586-023-00288-7
- 53. Xie, D., Zhang, L., Bai, L. (2017). Deep Learning in Visual Computing and Signal Processing. Applied Computational Intelligence and Soft Computing, Vol. 2017, Iss. 10, pp. 1-13, doi: 10.1155/2017/1320780
- 54. Yueting, Z., Yunhe, P. (1995). Case-based synthesis in automatic advertising creation system. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2620, pp. 522-528, doi: 10.1117/12.217544
- 55. Zhang, M., Li, J. (2021). A commentary of GPT-3 in MIT Technology Review 2021. Fundamental Research, Vol. 1, Iss. 6, pp. 831-833, doi: 10.1016/j.fmre.2021.11.01
- 56. Zhang, H., Zhong, S. (2011). Co-op advertising analysis within a supply chain based on the product life cycle. Proceedings of 7th International Conference on Computational Intelligence and Security, CIS 2011, pp. 1456-1460. doi: 10.1109/CIS.2011.325
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e5e4b01-15b1-40d0-8e19-32a710b4f899
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.