Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A series of intense seismic activities were unusually reported during the initial stage of room and pillar mining operations at the “Polkowice-Sieroszowice” copper ore mine, in Poland. In fact, high-energy tremors with energy of up to 107 J were observed in many mining fields from the beginning of the mining operation to the moment before reaching the critical space of the caved zone (goaf). Some of these tremors caused floor heave, sidewall squeezing, and spalling of the roof and sidewalls in the workings, leading to the stoppage of mining operations. This paper aims to identify the possible causes of these unexpected tremors. For this purpose, the geo-mining conditions and seismic activity data from the studied mining fields were reviewed and analysed. Additionally, a numerical analysis of rock mass behaviour was conducted, considering various geomechanical factors to better understand the mechanisms of seismic activity in these fields. All numerical calculations were performed using the finite difference method (FDM) code, FLAC3D. Based on the findings, the major causes of the high-energy tremors were determined as high primary stress, high-strength roof rocks, and the presence of a thick salt layer in the roof rocks. Consequently, practical recommendations for future mining operations were suggested to mitigate the impact of intense seismic activity. This research is expected to provide a valuable reference for copper mines prone to tremors and rockbursts, not only in Poland but worldwide.
Wydawca
Czasopismo
Rocznik
Tom
Strony
559--573
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
- Central Mining Institute – National Research Institute, Katowice, Poland
autor
- Central Mining Institute – National Research Institute, Katowice, Poland
autor
- Central Mining Institute – National Research Institute, Katowice, Poland
autor
- Polkowice-Sieroszowice Copper Mine, KGHM Polska Miedz S.A., Kaźmierzów, Poland
autor
- VINACOMIN – Institute of Mining Science and Technology, Hanoi, Vietnam
Bibliografia
- [1] W .A. Lenhardt, Seismicity associated with deep-level mining at Western Deep Levels Limited. Journ. South Afr.Inst. Min. Metall. 92 (5), 113-120 (1992).
- [2] Z . Burtan, The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland). E3S Web Conf. 24 (2017). DOI: https://doi.org/10.1051/e3sconf/20172401004.
- [3] H . Khalil, T. Chen, Y.H. Xu, H. Mitri, Effect of mining and geology on mining-induced seismicity – A case study.Journal of Sustainable Mining 21 (3), (2022). DOI: https://doi.org/10.46873/2300-3960.1361.
- [4] J. Dubiński, W. Konopko, Rockbursts – Assessment, Prediction, Combating. Central Mining Institute. Katowice. (2000).
- [5] J. Kabiesz, J. Makówka, Empirical-analytical method for evaluating the pressure distribution in the hard coalseams. Mining Science and Technology (China) 19 (5), 556-562 (2009).DOI: https://doi.org/10.1016/S1674-5264(09)60104-6.
- [6] W .C. Zhu, Z.H. Li, L. Zhu, C.A. Tang, Numerical simulation on rockburst of underground opening triggered bydynamic disturbance. Tunnelling and Underground Space Technology 5 (5), 587-599 (2010).DOI: https://doi.org/10.1016/j.tust.2010.04.004.
- [7] B . Orlecka-Sikora, S. Lasocki, G. Lizurek, L. Rudziński, Response of seismic activity in mines to the stress changesdue to mining induced strong seismic events. International Journal of Rock Mechanics and Mining Sciences 53,151-158 (2012). DOI: https://doi.org/10.1016/j.ijrmms.2012.05.010.
- [8] Ł. Wojtecki, M. Knopik, W.M. Zuberek, The influence of a local fault zone on high energy tremor occurrenceduring longwall mining of a coal seam. Acta Geophys. 64 (4), 1164-1175 (2016).DOI: https://doi.org/10.1515/acgeo-2016-004.
- [9] C. Tang, Numerical simulation of progressive rock failure and associated seismicity. International Journal of Rock Mechanics and Mining Sciences 34 (2), 249-261 (1997). DOI: https://doi.org/10.1016/S0148-9062(96)00039-3.
- [10] C.A. Tang, P.K. Kaiser, Numerical Simulation of Damage Accumulation and Seismic Energy Release During Brittle Rock Failure – Part II: Rib Pillar Collapse. International Journal of Rock Mechanics and Mining Sciences35 (2), 123-134 (1998). DOI: https://doi.org/10.1016/S0148-9062(97)00010-7.
- [11] J.A. Wang, H.D. Park, Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunnellingand Underground Space Technology 16, 49-57 (2001). DOI : https://doi.org/10.1016/S0886-7798(01)00030-X.
- [12] B.H.G. Brady, E.T. Brown, Rock Mechanics for Underground Mining (third ed.), Springer, The Netherlands (2004).
- [13] C.P. Lu, G.J. Liu, Y. Liu, N. Zhang, J.H. Xue, L. Zhang, Microseismic multi-parameter characteristics of rockbursthazard induced by hard roof fall and high stress concentration. International Journal of Rock Mechanics and Mining Sciences 76, 18-32 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2015.02.005.
- [14] J. Cieślik, Z. Burtan, D. Chlebowski, A. Zorychta, Geomechanical analysis of location and conditions for mining induced tremors in LGOM copper mines. Journal of Sustainable Mining 16 (3), 94-103 (2017).DOI: https://doi.org/10.1016/j.jsm.2017.10.002.
- [15] K . Stec, Geomechanical conditions of causes of high-energy rock mass tremors determined based on the analysis of parameters of focal mechanisms. J. Sustain. Min. 14 (1), 55-65 (2015).DOI: https://doi.org/10.1016/j.jsm.2015.08.008.
- [16] G . Kwiatek, A search for sequences of mining-induced seismic events at the Rudna copper mine in Poland. Acta Geophysica Polonica 52 (2), 155-171 (2004).
- [17] J. Kabiesz, J. Makówka, Selected elements of rock burst state assessment in case studies from the Silesian hardcoal mines. Mining Science and Technology (China) 19 (5), 660-667 (2009).DOI: https://doi.org/10.1016/S1674-5264(09)60123-X.
- [18] B. Orlecka-Sikora, E.E. Papadimitriou, G. Kwiatek, A study of the interaction among mining-induced seismicevents in the Legnica-Głogów Copper District, Poland. Acta Geophys. 57, 413-434 (2009).DOI: https://doi.org/10.2478/s11600-008-0085-z.
- [19] M. Kozłowska, Analysis of spatial distribution of mining tremors occurring in Rudna copper mine (Poland). Acta Geophys. 61, 1156-1169 (2013). DOI: https://doi.org/10.2478/s11600-013-0137-x.
- [20] K . Adach-Pawelus, J. Butra, D. Pawelus, An Attempt at Evaluation of the Remnant Influence On the Occurrence of Seismic Phenomena in a Room and Pillar Mining System with Roof Deflection. Studia Geotechnica et Mechanica39 (2), 3-16 (2017). DOI: https://doi.org/10.1515/sgem-2017-0011.
- [21] M.J. Mendecki, Ł. Wojtecki, W.M. Zuberek, Case studies of seismic energy release ahead of underground coalmining before strong tremors. Pure and Applied Geophysics 176 (8), 3487-3508 (2019).DOI: https://doi.org/10.1007/s00024-019-02144-0.
- [22] M. Ilieva, Ł. Rudziński, K. Pawłuszek-Filipiak, G. Lizurek, I. Kudłacik, D. Tondaś, D. Olszewska, Combinedstudy of a significant mine collapse based on seismological and geodetic data – 29 January 2019, Rudna Mine, Poland. Remote Sens. 12 (10), 1570 (2020). DOI: https://doi.org/10.3390/rs12101570.
- [23] H . Marcak, Z. Pilecki, Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain. Arch. Min. Sci. 64 (1), 197-212 (2019). DOI: https://doi.org/10.24425/ams.2019.126280.
- [24] S. Wasilewski, Gas-dynamic phenomena caused by rock mass tremors and rock bursts. International Journal of Mining Science and Technology 30 (3), 413-420 (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.03.012.
- [25] T . Cichy, S. Prusek, J. Świątek, D.B. Apel, Y. Pu, Use of Neural Networks to Forecast Seismic Hazard Expressed by Number of Tremors Per Unit of Surface. Pure Appl. Geophys. 177, 5713-5722 (2020).DOI: https://doi.org/10.1007/s00024-020-02602-0.
- [26] K . Adach-Pawelus, D. Pawelus, Application of Hydraulic Backfill for Rockburst Prevention in the Mining Fieldwith Remnant in the Polish Underground Copper Mines. Energies. 14 (13), 3869 (2021).DOI: https://doi.org/10.3390/en14133869.
- [27] L. Wojtecki, J. Kurzeja, M. Knopik, The influence of mining factors on seismic activity during longwall mining of a coal seam. Int. J. Min. Sci. Techno. 31, 429-437 (2021). DOI: https://doi.org/10.1016/j.ijmst.2021.01.010.
- [28] G .N. Pande, G. Beer, J.R. Williams, Numerical Methods in Rock Mechanics. John Wiley & Sons, 343 (1990).
- [29] J. Jing, A review of techniques, advances, and outstanding issues in numerical modelling for rock mechanics androck engineering. Int. J. Rock Mech. Min. 40, 283-353 (2003).DOI: https://doi.org/10.1016/S1365-1609(03)00013-3.
- [30] L. Jing, J.A. Hudson, Numerical methods in rock mechanics, International Journal of Rock Mechanics and Mining Sciences 39 (4), 409-427 (2002). DOI: https://doi.org/10.1016/S1365-1609(02)00065-5.
- [31] W . Zhu, J. Zhao, Stability Analysis and Modelling of Underground Excavations in Fractured Rocks. Ed. J.A. Hudson. Elsevier Geo-Engineering Book Series – Volume 1, Netherlands, 289 (2004).
- [32] L. Ribeiro e Sousa, E. Vargas Junior, M.M. Fernandes, R. Azevedo, Innovative Numerical Modelling in Geomechanics. CRC Press Taylor & Francis Group. (2012).
- [33] W .G. Pariseau, Notes on Numerical Modeling in Geomechanics (1st ed.). CRC Press. (2022).DOI: https://doi.org/10.1201/9781003166283.
- [34] P.M.V. Nguyen, T. Olczak, S. Rajwa, An investigation of longwall failure using 3D numerical modelling – A casestudy at a copper mine. Studia geotechnica et Mechanica 43 (4), 389-410 (2021).DOI: https://doi.org/10.2478/sgem-2021-0019.
- [35] P.M.V. Nguyen, S. Rajwa, M. Płonka, W. Stachura, Geomechanical assessments of longwall working stability –A case study. Archives of Mining Sciences 67 (2), 333-354 (2022). DOI: https://doi.org/10.24425/ams.2022.141462.
- [36] P.M.V. Nguyen, M. Marciniak, Stochastic Rock Slope Stability Analysis: Open Pit Case Study with Adjacent Block Caving. Geotech. Geol. Eng. 42, 5827-5845 (2024). DOI: https://doi.org/10.1007/s10706-024-02862-w.
- [37] P. Das Jennifer, P. Porchelvan, S.R. Naik, Numerical Modelling of Mining Induced Seismicity in Deep Closed Mines: A Case Study. In: Verma, A.K., et al. Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures. ICGMTU 2021. Lecture Notes in Civil Engineering 228 (2022).DOI: https://doi.org/10.1007/978-981-16-9770-8_28.
- [38] I . Atabekov, Numerical models of earthquake mechanism. Geodesy and Geodynamics 12 (2), 148-154 (2021).DOI: https://doi.org/10.1016/j.geog.2021.03.002.
- [39] J. Drzewiecki, A. Piernikarczyk, The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event. Journal of Sustainable Mining 16 (1), 1-7 (2017).DOI: https://doi.org/10.1016/j.jsm.2017.05.001.
- [40] G .J. Liu, S.L. Li, Z.L. Mu, W. Chen, L.B. Song, J. Liu, Y.D. Xu, Numerical study on the impact instability characteristics induced by mine earthquake and the support scheme of roadway. Shock Vib. 1-16 (2021).DOI: https://doi.org/10.1155/2021/7697905.
- [41] J. Wang, D.B. Apel, Y. Pu, R. Hall, C. Wei, M. Sepehri, Numerical modelling for rockbursts: A state-of-the-artreview. Journal of Rock Mechanics and Geotechnical Engineering 13 (2), 457-478 (2021).DOI: https://doi.org/10.1016/j.jrmge.2020.09.011.
- [42] S. He, T. Chen, D. Song, X. He, J. Chen, Z. Li, H. Mitri, A new methodology for the simulation of tunnel rockburst due to far-field seismic event. Journal of Applied Geophysics 202, 104651 (2022).DOI: https://doi.org/10.1016/j.jappgeo.2022.104651.
- [43] Y . Guo, C. Lu, Z. He, J. Song, Numerical and Field Investigations of Tremors Induced by Thick-Hard Strata Fracture. Appl. Sci. 12, 11151 (2022). DOI: https://doi.org/10.3390/app122111151.
- [44] W .T. Witkowski, M. Łucka, A. Guzy, H. Sudhaus, A. Barańska, R. Hejmanowski, Impact of mining-induced seismicity on land subsidence occurrence. Remote Sensing of Environment 301, 113934 (2024).DOI: https://doi.org/10.1016/j.rse.2023.113934.
- [45] X. Bao, H. Yuan, J. Shen, C. Liu, X. Chen, H. Cui, Numerical analysis of seismic response of a circular tunnel rectangular underpass system in liquefiable soil. Computers and Geotechnics 174, 106642 (2024).DOI: https://doi.org/10.1016/j.compgeo.2024.106642.
- [46] D. Rajkumar, Numerical analysis of secondary system subjected to underground blast loading. Asian J. Civ. Eng.(2024). DOI: https://doi.org/10.1007/s42107-024-01140-7.
- [47] Q. Wu, X. Ding, Y. Zhang, Y. Zhang, Numerical analysis of seismic response of rectangular underground structurein coral sand. Underground Space 9, 155-172 (2023). DOI: https://doi.org/10.1016/j.undsp.2022.07.005.
- [48] Y .Y. Ko, H.H. Yang, C.W. Hu, Y.J. Huang, Y.Y. Lin, Numerical seismic performance assessment and fragility analysis for gravity-type wharves considering the influence of soil lique faction. Soil Dynamics and Earthquake Engineering 180, 108581 (2024). DOI: https://doi.org/10.1016/j.soildyn.2024.108581.
- [49] I tasca Consulting Group Inc., Minneapolis. FLAC3D, Version 5.0. (2012). Software available at www.itascacg.com[50] KGHM development prospects, 2013. available at www.kghm.com.
- [51] E. Hoek, E.T. Brown, Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences 34 (8), 1165-1186 (1997). DOI: https://doi.org/10.1016/S1365-1609(97)80069-X.
- [52] J.R. Rice, The mechanics of earthquake rupture in Physics of the Earth Interior. (Proceedings of International School of Physics ”Enrico Fermi” Italian Physical Society North-Holland Pub. Co. 515-649 (1980).
- [53] J.R. Rice, A.L. Ruina, Stability of steady frictional slipping. Trans. ASME, J. Appl. Mech. 50, 343-349 (1983).
- [54] H . Marcak, Seismicity in mines due to roof layer bending. Arch. Min. Sci. 57 (1), 229-250 (2012).DOI: https://doi.org/10.2478/v10267-012-0016-3.
- [55] J. Koyama, The complex faulting process of earthquakes. Kluwer Academic Publishers. (1997).
- [56] A .B. Gogolewska, A. Markowiak, Konwergencja jako wskaźnik zagrożenia sejsmicznego w wybranych polach eksploatacyjnych w KGHM Polska Miedź O/ZG Polkowice-Sieroszowice. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk 101, 159-172 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-271c560b-c3f5-4954-b2e1-d793cefccfbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.