PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust content-based image retrieval using ICCV, GLCM, and DWT-MSLBP descriptors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Content-based image retrieval (CBIR) retrieves visually similar images from a dataset based on a specified query. A CBIR system measures the similarities between a query and the image contents in a dataset and ranks the dataset images. This work presents a novel framework for retrieving similar images based on color and texture features. We have computed color features with an improved color coherence vector (ICCV) and texture features with a gray-level co-occurrence matrix (GLCM) along with DWT-MSLBP (which is derived from applying a modified multi-scale local binary pattern [MS-LBP] over a discrete wavelet transform [DWT], resulting in powerful textural features). The optimal features are computed with the help of principal component analysis (PCA) and linear discriminant analysis (LDA). The proposed work uses a variancebased approach for choosing the number of principal components/eigenvectors in PCA. PCA with a 99.99% variance preserves healthy features, and LDA selects robust ones from the set of features. The proposed method was tested on four benchmark datasets with Euclidean and city-block distances. The proposed method outshines all of the identified state-of-the-art literature methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--36
Opis fizyczny
Bibliogr. 97 poz., rys., tab.
Twórcy
autor
  • Gujarat Technological University, Ahmedabad, India
  • Government Engineering College, Modasa, India
  • Gujarat Technological University, Ahmedabad, India
  • Government Engineering College, Modasa, India
Bibliografia
  • [1] Abate A.F., Nappi M., Ricciardi S., Tortora G.: FACES: 3D FAcial reConstruction from anciEnt Skulls using content based image retrieval, Journal of Visual Languages and Computing, vol. 15(5), pp. 373–389, 2004. doi: 10.1016/j.jvlc. 2003.11.004.
  • [2] Ahmed K.T., Ummesafi S., Iqbal A.: Content based image retrieval using image features information fusion, Information Fusion, vol. 51, pp. 76–99, 2019. doi: 10. 1016/j.inffus.2018.11.004.
  • [3] Antani S., Long L.R., Thoma G.R.: Bridging the Gap: Enabling CBIR in Medical Applications. In: Proceedings of the Twenty-First IEEE International Symposium on Computer-Based Medical Systems, pp. 4–6, IEEE, 2008. doi: 10.1109/CBMS. 2008.133.
  • [4] Arai K., Rahmad C.: Wavelet Based Image Retrieval Method. In: Reports of the 260th Technical Conference of the Institute of Image Electronics Engineers of Japan, pp. 243–247, 2012. doi: 10.11371/wiieej.11.04.0_243.
  • [5] Ashraf R., Ahmed M., Ahmad U., Habib M.A., Jabbar S., Naseer K.: MDCBIR-MF: multimedia data for content-based image retrieval by using multiple features, Multimedia Tools and Applications, vol. 79, pp. 8553–8579, 2020. doi: 10.1007/s11042-018-5961-1.
  • [6] Bhunia A.K., Bhattacharyya A., Banerjee P., Roy P.P., Murala S.: A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern, Pattern Analysis and Applications, vol. 23(2), pp. 703–723, 2020. doi: 10.1007/s10044-019-00827-x.
  • [7] Chavda S., Goyani M.: Content-Based Image Retrieval: The State of the Art, International Journal of Next-Generation Computing, vol. 10(3), pp. 193–212, 2019. https://ijngc.perpetualinnovation.net/index.php/ijngc/article/view/166.
  • [8] Chavda S., Goyani M.: Hybrid Approach to Content-Based Image Retrieval Using Modified Multi-Scale LBP and Color Features, SN Computer Science, vol. 1, pp. 1–15, 2020. doi: 10.1007/s42979-020-00321-w.
  • [9] Chen X., Gu X., Xu H.: An Improved Color Coherence Vector Method for CBIR. In: Communication and Information Technology Conference, pp. 33–37, Beijing University Graduate Academic Exchange, 2008.
  • [10] Chen Y.H., Chang C.C., Hsu C.Y.: Content-based image retrieval using block truncation coding based on edge quantization, Connection Science, vol. 32, pp. 431–448, 2020. doi: 10.1080/09540091.2020.1753174.
  • [11] Choraś R.S.: CBIR system for detecting and blocking adult images. In: The 9th World Scientific and Engineering Academy and Society International Conference on Signal processing, pp. 52–57, 2010. https://dl.acm.org/doi/abs/10.5555/ 1844625.1844636.
  • [12] Chu K., Liu G.H.: Image Retrieval Based on a Multi-Integration Features Model, Mathematical Problems in Engineering, vol. 2020, pp. 1–10, 2020. doi: 10.1155/ 2020/1461459.
  • [13] Chuctaya H., Portugal C., Beltran C., Gutierrez J., Lopez C., Tupac Y.: M-CBIR: A medical content-based image retrieval system using metric data-structures. In: 30th International Conference of the Chilean Computer Science Society, pp. 135–141, IEEE, 2011. doi: 10.1109/SCCC.2011.18.
  • [14] Colombo C., Alberto D.B.: Visible Image Retrieval. In: V. Castelli, L.D. Bergman (eds.) Image Databases: Search and Retrieval of Digital Imagery, pp. 11–33, John Wiley & Sons, Ltd, 2001. doi: 10.1002/0471224634.ch2.
  • [15] Comon P.: Independent component analysis, a new concept?, Signal Processing, vol. 36(3), pp. 287–314, 1994.
  • [16] Duanmu X.: Image Retrieval Using Color Moment Invariant. In: Seventh International Conference on Information Technology, pp. 200–209, IEEE, 2019. doi: 10.1109/ITNG.2010.231.
  • [17] Dubey S.R., Singh S.K., Singh R.K.: Boosting local binary pattern with bag-of-filters for content based image retrieval, IEEE UP Section Conference on Electrical Computer and Electronics, pp. 1–6, 2015. doi: 10.1109/UPCON.2015. 7456703.
  • [18] Dubey S.R., Singh S.K., Singh R.K.: Rotation and scale invariant hybrid image descriptor and retrieval, Computers & Electrical Engineering, vol. 46, pp. 288–302, 2015. doi: 10.1016/j.compeleceng.2015.04.011.
  • [19] ElAlami M.E.: A novel image retrieval model based on the most relevant features, Knowledge-Based Systems, vol. 24(1), pp. 23–32, 2011. doi: 10.1016/j.knosys. 2010.06.001.
  • [20] Enser P.G., Sandom C.J., Lewis P.H.: Surveying the reality of semantic image retrieval. In: International Conference on Advances in Visual Information Systems, pp. 177–188, Springer, 2005. doi: 10.1007/11590064_16.
  • [21] Fadaei S., Amirfattahi R., Ahmadzadeh M.R.: New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features, IET Image Processing, vol. 11, pp. 89–98, 2017. doi: 10.1049/iet-ipr.2016.0542.
  • [22] Ghozzi Y., Baklouti N., Hagras H., Ayed M.B., Alimi A.M.: Interval Type-2 Beta Fuzzy Near Sets Approach to Content Based Image Retrieval, IEEE Transactions on Fuzzy Systems, vol. 30(3), pp. 805–817, 2021. doi: 10.1109/TFUZZ.2021. 3049900.
  • [23] Graham M.E.: The cataloguing and indexing of images: time for a new paradigm?, Art Libraries Journal, vol. 26(1), pp. 22–27, 2001. doi: 10.1017/ S0307472200012001.
  • [24] Hafiane A., Chaudhuri S., Seetharaman G., Zavidovique B.: Region-based CBIR in GIS with local space filling curves to spatial representation, Pattern Recognition Letters, vol. 27(4), pp. 259–267, 2006. doi: 10.1016/j.patrec.2005.08.007.
  • [25] Haralick R., Shanmugam K.: Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, pp. 610–621, 1973. doi: 10.1109/TSMC.1973.4309314.
  • [26] Holt B., Hartwick L.: Retrieving art images by image content: the UC Davis QBIC project, Aslib Proceedings, vol. 46(10), pp. 243–248, 1994. doi: 10.1108/ eb051371.
  • [27] Huang J., Kumar S.R., Mitra M.: Combining supervised learning with color correlograms for content-based image retrieval. In: The Fifth ACM International Conference on Multimedia, pp. 325–334, 1997. doi: 10.1145/266180.266383.
  • [28] Huang J., Kumar S.R., Mitra M., Zhu W.J., Zabih R.: Image indexing using color correlograms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, 1997. doi: 10.1109/CVPR.1997.609412.
  • [29] Ivanova K., Stanchev P.: Color harmonies and contrasts search in art image collections. In: Advances in Multimedia, pp. 180–187, IEEE, 2009. doi: 10.1109/ MMEDIA.2009.41.
  • [30] Jabid T., Kabir M.H., Chae O.: Local Directional Pattern (LDP) – A Robust Image Descriptor for Object Recognition. In: International Conference on Advanced Video and Signal Based Surveillance, pp. 482–487, IEEE, 2010. doi: 10.1109/AVSS.2010.17.
  • [31] Jacob I.J., Srinivasagan K.G., Darney P.E., Jayapriya K.: Deep learned InterChannel Colored Texture Pattern: a new chromatic-texture descriptor, Pattern Analysis and Applications, vol. 23, pp. 239–251, 2020. doi: 10.1007/ s10044-019-00780-9.
  • [32] Jolliffe I.: Principal Component Analysis. In: International Encyclopedia of Statistical Science, pp. 1094–1096, Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-04898-2_455.
  • [33] Jones B., Schaefer G., Zhu S.: Content-based image retrieval for medical infrared images. In: 26th International Conference on Engineering in Medicine and Biology Society, pp. 1186–1187, IEEE, 2004. doi: 10.1109/IEMBS.2004.1403379.
  • [34] Joseph A., Rex E.S., Christopher S., Jose J.: Content-based image retrieval using hybrid k-means moth flame optimization algorithm, Arabian Journal of Geosciences, vol. 14(8), pp. 1–14, 2021. doi: 10.1007/s12517-021-06990-y.
  • [35] Ju H., Ma K.K.: Fuzzy color histogram and its use in color image retrieval, IEEE Transactions on Image Processing, vol. 11(8), pp. 944–952, 2002. doi: 10.1109/ TIP.2002.801585.
  • [36] Kumar N., Berg A., Belhumeur P.N., Nayar S.: Describable visual attributes for face verification and image search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33(10), pp. 1962–1977, 2011. doi: 10.1109/TPAMI. 2011.48.
  • [37] Lee D.D., Seung H.S.: Learning the parts of objects by non-negative matrix factorization, Nature Science Journal, vol. 401, pp. 788–791, 1999.
  • [38] Li J., Wang J.Z.: Automatic Linguistic Indexing of Pictures by a statistical modeling approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25(9), pp. 1075–1088, 2003. doi: 10.1109/TPAMI.2003.1227984.
  • [39] List J.: How drawings could enhance retrieval in mechanical and device patent searching, World Patent Information, vol. 29(3), pp. 210–218, 2007. doi: 10.1016/ j.wpi.2007.01.001.
  • [40] Liu G.H., Yang J.Y.: Content-based image retrieval using color difference histogram, Pattern Recognition, vol. 46(1), pp. 188–198, 2013. doi: 10.1016/j.patcog. 2012.06.001.
  • [41] Liu G.H., Yang J.Y.: Content-based image retrieval using computational visual attention model, Pattern Recognition, vol. 48, pp. 2554–2566, 2015. doi: 10.1016/j.patcog.2015.02.005.
  • [42] Liu Y., Huang Y., Gao Z.: Feature extraction and similarity measure for crime scene investigation image retrieval, Journal of Xian University of Posts and Telecommunications, vol. 19, pp. 11–16, 2014.
  • [43] Liu Y., Huang Y., Zhang S., Zhang D., Ling N.: Integrating object ontology and region semantic template for crime scene investigation image retrieval. In: Industrial Electronics and Applications, pp. 149–153, IEEE, 2017. doi: 10.1109/ICIEA.2017.8282831.
  • [44] Liu Y., Zhang D., Lu G., Ma W.Y.: A survey of content-based image retrieval with high-level semantics, Pattern Recognition, vol. 40(1), pp. 262–282, 2007. doi: 10.1016/j.patcog.2006.04.045.
  • [45] Lopes A.P.B., de Avila S.E.F., Peixoto A.N.A., Oliveira R.S., de Araújo A.A.: A bag-of-features approach based on Hue-SIFT descriptor for nude detection. In: 17th European Signal Processing Conference, pp. 1552–1556, IEEE, 2009.
  • [46] Lopes A.P.B., de Avila S.E.F., Peixoto A.N.A., Oliveira R.S., de Coelho M.M., de Araújo A.A.: Nude Detection in Video Using Bag-of-Visual-Features. In: XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 224–231, IEEE, 2009. doi: 10.1109/SIBGRAPI.2009.32.
  • [47] Manjunath B.S., Ohm J.R., Vasudevan V.V., Yamada A.: Color and texture descriptors, IEEE Transactions on Circuits and Systems for Video Technology, vol. 11(6), pp. 703–715, 2001. doi: 10.1109/76.927424.
  • [48] Mathew S.P., Balas V.E., Zachariah K.: A content-based image retrieval system based on convex hull geometry, Acta Polytechnica Hungarica, vol. 12(1), pp. 103–116, 2015.
  • [49] Merwe J.S. van der, Ferreira H.C., Clarke W.A.: Towards Detecting Man-made Objects in Natural environments for a Man-made Object MPEG-7 CBIR Descriptor – SANDF Application. In: 16th Annual Symposium of the Pattern Recognition Association of South Africa, vol. 1, pp. 19–24, 2005.
  • [50] Mohiuddin F., Hossain I., Kabir M.W.U.: A noble color-texture hybrid method for content-based image retrieval. In: 20th International Conference of Computer and Information Technology, pp. 1–6, IEEE, 2017. doi: 10.1109/ICCITECHN. 2017.8281841.
  • [51] Muller S., Rigoll G.: Improved stochastic modeling of shapes for contentbased image retrieval. In: Content-Based Access of Image and Video Libraries, pp. 23–27, IEEE, 1999.
  • [52] Murala S., Maheshwari R.P., Balasubramanian R.: Local tetra patterns: A new feature descriptor for content-based image retrieval, IEEE Transactions on Image Processing, vol. 21, pp. 2874–2886, 2012. doi: 10.1109/TIP.2012.2188809.
  • [53] Niu D., Zhao X., Lin X., Zhang C.: A novel image retrieval method based on multi-features fusion, Signal Processing: Image Communication, vol. 87, p. 115911, 2020. doi: 10.1016/j.image.2020.115911.
  • [54] Ojala T., Pietikainen M., Harwood D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In:The 12th International Conference on Pattern Recognition, Computer Vision and Image Processing, vol. 1, pp. 582–585, IEEE, 1994. doi: 10.1109/ICPR. 1994.576366.
  • [55] Ojala T., Pietikainen M., Maenpaa T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24(7), pp. 971–987, 2002. doi: 10.1109/TPAMI.2002.1017623.
  • [56] Pardede J., Sitohang B., Akbar S., Khodra M.L.: Re-weighting Relevance Feedback in HSV Quantization for CBIR. In: The 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 58–63, IEEE/ACIS, 2018. doi: 10.1007/978-3-540-75690-3_13.
  • [57] Pass G., Zabith R.: Histogram refinement for content-based image retrieval. In: Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV’96, pp. 96–102, IEEE, 1996. doi: 10.1109/ACV.1996.572008.
  • [58] Pass G., Zabith R., Miller J.: Comparing images using color coherence vectors. In: The Fourth ACM International Conference on Multimedia, pp. 65–73, ACM, 1997. doi: https://dl.acm.org/doi/10.1145/244130.244148.
  • [59] Pavithra L.K., Sharmila T.S.: A new multi-level radial difference encoded pattern for image classification and retrieval, Multidimensional Systems and Signal Processing, vol. 31(4), pp. 1411–1433, 2020. doi: 10.1007/s11045-020-00713-4.
  • [60] Pradhan J., Ajad A., Pal A.K., Banka H.: Multi-level colored directional motif histograms for content-based image retrieval, The Visual Computer, vol. 36, pp. 1847–1868, 2019. doi: 10.1007/s00371-019-01773-9.
  • [61] Pradhan J., Kumar S., Pal A.K., Banka H.: A hierarchical CBIR framework using adaptive tetrolet transform and novel histograms from color and shape features, Digital Signal Processing, vol. 82, pp. 258–281, 2018. doi: 10.1016/j.dsp. 2018.07.016.
  • [62] Rao L.K., Rohini P., Reddy L.P.: Multiple Color Channel Local Extrema Patterns for Image Retrieval. In: Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems, vol. 65, pp. 115–123, 2019. doi: 10.1007/978-981-13-3765-9_13.
  • [63] Raza A., Nawaz T., Dawood H., Dawood H.: Square texton histogram features for image retrieval, Multimedia Tools and Applications, vol. 78, pp. 2719–2746, 2019. doi: 10.1007/s11042-018-5795-x.
  • [64] Rohini P., Bindu C.S.: Quantized Local Trio Patterns for Multimedia Image Retrieval System. In: Lecture Notes in Networks and Systems, pp. 107–113, Springer, 2019. doi: 10.1007/978-981-13-3765-9_12.34
  • [65] Rui M., Cheng H.D.A.: Effective image retrieval using dominant color descriptor and fuzzy support vector machine, Pattern Recognition, vol. 42, pp. 147–157, 2009. doi: 10.1016/j.patcog.2008.07.001.
  • [66] Rui Y., Huang T.S., Chang S.F.: Image retrieval: Current techniques, promising directions, and open issues, Journal of Visual Communication and Image Representation, vol. 10, pp. 39–62, 1999. doi: 10.1006/jvci.1999.0413.
  • [67] Ruiz M.E.: Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images. In: American Medical Informatics Association Annual Symposium Proceedings, pp. 674–678, 2006.
  • [68] Shriram K., Priyadarsini P., Baskar A.: An intelligent system of content-based image retrieval for crime investigation, International Journal of Advanced Intelligence Paradigms, vol. 7(3-4), pp. 264–279, 2015. doi: 10.1504/IJAIP.2015.073707.
  • [69] Shyu C.R., Kak A., Brodley C.E., Broderick L.S.: Testing for human perceptual categories in a physician-in-the-loop CBIR system for medical imagery. In: Workshop on Content-Based Access of Image and Video Libraries, pp. 102–108, IEEE, 1999. doi: 10.1109/IVL.1999.781132.
  • [70] Singh S., Batra S.: An efficient bi-layer content based image retrieval system, Multimedia Tools and Applications, vol. 79, pp. 17731–17759, 2020. doi: 10.1007/s11042-019-08401-7.
  • [71] Srivastava P., Khare A.: Integration of wavelet transform, Local Binary Patterns and moments for content-based image retrieval, Journal of Visual Communication and Image Representation, vol. 42, pp. 78–103, 2017. doi: 10.1016/j.jvcir.2016.11.008.
  • [72] Srivastava P., Khare A.: Content-based image retrieval using multiresolution speeded-up robust feature, International Journal of Computational Vision and Robotics, vol. 8(4), pp. 375–387, 2018. doi: 10.1504/IJCVR.2018.093967.
  • [73] Srivastava P., Khare A.: Utilizing multiscale local binary pattern for content-based image retrieval, Multimedia Tools and Applications, vol. 77, pp. 12377–12403, 2018. doi: 10.1007/s11042-017-4894-4.
  • [74] Subash Kumar T., Nagarajan V.: Local curve pattern for content-based image retrieval, Pattern Analysis and Applications, vol. 22(3), pp. 1233–1242, 2019. doi: 10.1007/s10044-018-0724-1.
  • [75] Sun J., Wu X.: Chain code distribution-based image retrieval. In: Intelligent Information Hiding and Multimedia Signal Processing, pp. 139–142, IEEE, 2006. doi: 10.1109/IIH-MSP.2006.264973.
  • [76] Talib A., Mahmuddin M., Husni H., George L.E.: A weighted dominant color descriptor for content-based image retrieval, Journal of Visual Communication and Image Representation, vol. 24(3), pp. 345–360, 2013. doi: 10.1016/j.jvcir. 2013.01.007.
  • [77] Tan X., Triggs B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: International Workshop on Analysis and Modeling of Faces and Gestures, pp. 168–182, Springer, 2007. doi: 10.1007/ 978-3-540-75690-3_13.
  • [78] Tiwari A., Bansal V.: PATSEEK: Content Based Image Retrieval System for Patent Database. In: International Council on English Braille, pp. 1167–1171, 2004. https://aisel.aisnet.org/iceb2004/199.
  • [79] Tyagi V.: Content-Based Image Retrieval Ideas Influences and Current Trends, Springer Nature Singapore Pte Ltd, 2017. doi: 10.1007/978-981-10-6759-4.
  • [80] Tănase-Avătavului M.: Shape decomposition and retrieval, Ph.D. thesis, Utrecht University, 2005. http://dspace.library.uu.nl/handle/1874/1700.
  • [81] Umamaheswaran S., Lakshmanan R., Vinothkumar V., Arvind K., Nagarajan S.: New and robust composite micro structure descriptor (CMSD) for CBIR, International Journal of Speech Technology, vol. 23(2), pp. 243–249, 2019. doi: 10.1007/s10772-019-09663-0.
  • [82] Vipparthi S.K., Nagar S.K.: Color Directional Local Quinary Patterns for Content Based Indexing and Retrieval, Human-centric Computing and Information Sciences, vol. 4(1), pp. 1–13, 2014. doi: 10.1186/s13673-014-0006-x.
  • [83] Vrochidis S., Papadopoulos S., Moumtzidou A., Sidiropoulos P., Pianta E., Kompatsiaris I.: Towards content-based patent image retrieval: A framework perspective, World Patent Information, vol. 32(2), pp. 94–106, 2010. doi: 10.1016/j.wpi. 2009.05.010.
  • [84] Wang J.Z., Li J., Wiederhold G.: SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries, IEEE Transactions on Pattern Analysis and Machine Intelligence,, vol. 23(9), pp. 947–963, 2001. doi: 10.1109/34.955109.
  • [85] Wong K.M., Po L.M., Cheung K.W.: Dominant color structure descriptor for image retrieval. In: International Conference on Image Processing, p. 365–368, 2006. doi: 10.1109/ICIP.2007.4379597.
  • [86] Xia Y., Wan S., Jin P., Yue L.: Multi-Scale Local Spatial Binary Patterns for Content-Based Image Retrieval. In: International Conference on Active Media Technology, pp. 423–432, Springer, 2013. doi: 10.1007/978-3-319-02750-0_45.
  • [87] Xie G., Guo B., Huang Z., Zheng Y., Yan Y.: Combination of Dominant Color Descriptor and Hu Moments in Consistent Zone for Content Based Image Retrieval, IEEE Access, vol. 8, pp. 146284–146299, 2020. doi: 10.1109/ACCESS. 2020.3015285.
  • [88] Xu D., Yan S., Tao D., Lin S., Zhang H.J.: Marginal Fisher Analysis and Its Variants for Human Gait Recognition and Content-Based Image Retrieval, IEEE Transactions on Image Processing, vol. 16(11), pp. 2811–2821, 2007. doi: 10.1109/TIP.2007.906769.
  • [89] Yu J., Qin Z., Wan T., Zhang X.: Feature integration analysis of bag-of-features model for image retrieval, Neurocomputing, vol. 120, pp. 355–364, 2013. doi: 10.1016/j.neucom.2012.08.061.
  • [90] Yuan B.H., Liu G.H.: Image retrieval based on gradient-structures histogram, Neural Computing and Applications, vol. 32, pp. 11717–11727, 2020. doi: 10.1007/s00521-019-04657-0.
  • [91] Zhang D., Lu G.: A comparative study on shape retrieval using Fourier descriptors with different shape signatures. In: International Conference on Intelligent Multimedia and Distance Education, pp. 1–9, 2001.
  • [92] Zhang L., Hu Y., Li M., Ma W., Zhang H.: Efficient propagation for face annotation in family albums. In: The 12th Annual International Conference on Multimedia, pp. 716–723, ACM, 2004. doi: 10.1145/1027527.1027689.
  • [93] Zhou J., Liu X., Liu W., Gan J.: Image retrieval based on effective feature extraction and diffusion process, Multimedia Tools and Applications, vol. 78, pp. 6163–6190, 2019. doi: 10.1007/s11042-018-6192-1.
  • [94] Zhou J., Liu X., Xu T., Gan J., Liu W.: A new fusion approach for content based image retrieval with color histogram and local directional pattern, International Journal of Machine Learning and Cybernetics, vol. 9(4), pp. 677–689, 2016. doi: 10.1007/s13042-016-0597-9.
  • [95] Zhou W., Li H., Tian Q.: Recent Advance in Content-based Image Retrieval: A Literature Survey, arXiv preprint arXiv:170606064, 2017.
  • [96] Zhou X.S., Zillner S., Moeller M., Sintek M., Zhan Y., Krishnan A., Gupta A.: Semantics and CBIR: a medical imaging perspective. In: The International Conference on Content-based Image and Video Retrieval, pp. 571–580, ACM, 2008. doi: 10.1145/1386352.1386436.
  • [97] Zhu L., Jin H., Zheng R., Zhang Q., Xie X., Guo M.: Content-Based Design Patent Image Retrieval Using Structured Features and Multiple Feature Fusion. In: 6th International Conference on Image and Graphics, pp. 969–974, IEEE, 011. doi: 10.1109/ICIG.2011.121.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86dd28b8-4023-4422-a5fb-c5958943b0a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.