PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new ceramic composite based on spherical aluminium oxide for auxiliary panels in high-temperature firing processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The subject of the research and investigation is a new ceramic foundry composite based on a spherical form of aluminium oxide. It is intended to limit the occurrence of technological problems related to the appropriate selection of auxiliary refractory materials, such as cracking, high heat capacity and variable coefficient of thermal expansion. Design/methodology/approach: A composite ceramic material with the spherical form of aluminium oxide included allows to reduce mass and stabilize characteristics of dimensional changes as a function of temperature in auxiliary panels in high-temperature firing processes with typical manufacturing process of the ceramics, which is gravity casting, drying and high-temperature firing. Findings: The study showed that the quantitative share of the spherical form of Al2O3 in the volume of ceramic material has a major impact on its properties. An increased share of spheres translates into greater material porosity and lower matrix density but also, by reducing the cross-section, into decreased strength properties. In the case of the developed ceramic material, there is no visible trend of a decrease in the coefficient of thermal expansion with increasing temperature, which is the case with traditional ceramic materials. Research limitations/implications: The strength of presented composite isn’t good and constitutes a further direction of research and development of the material. Practical implications: Although decreased strength properties, the composite with no visible trend of a decrease in the coefficient of thermal expansion with increasing temperature could be used as panels in high-temperature firing processes. Originality/value: New ceramic foundry composite based on a spherical form of aluminium oxide for auxiliary panels in high temperature processes.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Institute of Materials Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
  • Institute of Materials Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Materials Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] D.J. Duvał, S.H. Risbud, J.F. Shackełford, Mułłite, in: J.F. Shackełford, R.H. Doremus (Eds.), Ceramic and Głass Materiałs: Structure, Properties and Processing, Springer, Boston, 2008, 27-39, DOI: https://doi.org/10.1007/978-0-387-73362-3 2.
  • [2] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite-A review, Journal of the European Ceramic Society 28/2 (2008) 329-344, DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.03.017.
  • [3] J. Anggono, Mullite Ceramics: Its Properties Structure and Synthesis, Jurnal Teknik Mesin Universitas Kristen Petra 7/1 (2005) 1-10, DOI: https://doi.org/10.9744/jtm.7.1.pp.1-10.
  • [4] H. Schneider, R.X. Fischer, J. Schreuer, Mullite: Crystal Structure and Related Properties, Journal of the American Ceramic Society 98/10 (2015) 2948-2967, DOI: https://doi.org/10.1111/jace.13817.
  • [5] M.I. Osendi, C. Baudm, Mechanical Properties of Mullite Materials, Journal of the European Ceramic Society 16/2 (1996) 217-224, DOI: https://doi.org/10.1016/0955-2219(95)00133-6.
  • [6] H. Schneider, M. Schmuker, K.J.D. Mackenzie, Basic Properties of Mullite, in: H. Schneider, S. Komarneni (Eds.), Mullite, Wiley, 2006, 141-225, DOI: https://doi.org/10.1002/3527607358.ch2.
  • [7] L. Carbajal, F. Rubio-Marcos, M.A. Bengochea, J.F. Fernandez, Properties related phase evolution in porcelain ceramics, Journal of the European Ceramic Society 27/13-15 (2007) 4065-4069, DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.096.
  • [8] F.J. Torres, E. Ruiz de Sola, J. Alarcón, Mechanism of crystallization of fast fired mullite-based glass-ceramic glazes for floor-tiles, Journal of Non-Crystalline Solids 352/21-22 (2006) 2159-2165, DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.038.
  • [9] F. Chargui, M. Hamidouche, H. Belhouchet, Y. Jorand, R. Doufnoune, G. Fantozzi, Mullite fabrication from natural kaolin and aluminium slag, Boletm de la Sociedad Espanola de Ceramica y Vidrio 57/4 (2018) 169-177, DOI: https://doi.org/10.1016Zi.bsecv.2018.01.001.
  • [10] F. Nadachowski, Outline of refractory technology, Silesian Technical Publishers, Katowice, 1995 (in Polish).
  • [11] G. Routschka, L.M. Hamersley, J. Hamersley, Pocket manual refractory materials: Basics, structures, properties, Vulkan-Verlag, Essen, 2004.
  • [12] F.J. Klug, S. Prochazka, R.H. Doremus, Alumina-Silica Phase Diagram in the Mollite Region, Journal of the American Ceramic Society 70/10 (1987) 750-759, DOI: https://doi.org/10.1111/j.1151-2916.1987.tb04875.x.
  • [13] N.L. Bowen, J.W. Greig, The system: AkOs.SiO2. Journal of the American Ceramic Society 7/4 (1924) 238-254, DOI: https:ZZdoi.orgZ10.1111Zi.1151-2916.1924.tb18190.x.
  • [14] R.B. Sosman, A pilgrimage to Mull, American Ceramic Society Bulletin 35/3 (1956) 52-54.
  • [15] J.-H. Eom, Y.-W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics: A review, Journal of Asian Ceramic Societies 1/3 (2013) 220-242, DOI: https://doi.org/10.1016Zi.jascer.2013.07.003.
  • [16] G.W. Meetham (Chief), Engineering ceramics: Part E of ‘Requirements for and factors affecting high temperature capability’, Materials and Design 10/3 (1989) 138-143, DOI: https://doi.org/10.1016/s0261- 3069(89)80029-9.
  • [17] J. Kriegesmann, Processing of silicon carbide-based ceramics, Comprehensive Hard Materials 2 (2014) 89-175, DOI: https://doi.org/10.1016/B978-0-08-096527- 7.00023-4.
  • [18] S.-K. Lee, M. Tatsumisago, T. Minami, The Ceramic Society of Japan NII-Electronic Library Service, Journal of the Ceramic Society of Japan, 1997.
  • [19] P. De Silva, K. Sagoe-Crenstil, V. Sirivivatnanon, Kinetics of geopolymerization: Role of AkOs and SiO2, Cement and Concrete Research 37/4 (2007) 512-518, DOI: https://doi.org/10.1016Zj.cemconres.2007.01.003.
  • [20] S. Cava, S.M. Tebcherani, I.A. Souza, S.A. Pianaro, C.A. Paskocimas, E. Longo, J.A. Varela, Structural characterization of phase transition of A^Os nano- powders obtained by polymeric precursor method, Materials Chemistry and Physics 103/2-3 (2007) 394-399, DOI: https://doi.org/10.1016Zj.matchemphys.2007. 02.046.
  • [21] A. Boumaza, L. Favaro, J. Ledion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Huntz, P. Roy, R. Tetot, Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study, Journal of Solid State Chemistry 182/5 (2009) 1171-1176, DOI: https://doi.org/10.1016/j.jssc.2009.02.006.
  • [22] R. McPherson, Formation of metastable phases in flame- and plasma-prepared alumina, Journal of Materials Science 8 (1973) 851-858, DOI: https://doi.org/10.1007/BF02397914.
  • [23] K.M. Shorowordi, T. Laoui, A. S.M. A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and A^Os reinforced Al matrix composites: A comparative study, Journal of Materials Processing Technology 142/3 (2003) 738-743, DOI: https://doi.orgZ10.1016/S0924-0136(03)00815-X.
  • [24] P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, VTT Tied - Valt Tek, Tutkimusk, 1996.
  • [25] P.J. Karditsas, M.-J. Baptiste, Aluminium oxide, in: Thermal and Structural Properties of Fusion Related Materials, Avaliable from: http://www- ferp.ucsd.edu/LIB/PROPS/PANOS/al2o3.html.
  • [26] B.J. Ash, D.F. Rogers, C.J. Wiegand, L.S. Schadler, R.W. Siegel, B.C. Benicewicz, T. Apple, Mechanical properties of ALOs/polymethylmethacrylate nanocom- posites, Polymer Composites 23/6 (2002) 1014-1025, DOI: https://doi.org/10.1002/pc.10497.
  • [27] H.J. Wang, Z.H. Jin, Y. Miyamoto, Effect of ALOs on mechanical properties of TisSiC2/Al2O3 composite, Ceramics International 28/8 (2002) 931-934, DOI: https://doi.org/10.1016/S0272-8842(02)00076-7.
  • [28] H. Heuschkel, G. Heuschkel, K. Muche, ABC Keramik: mit 77 Tabellen und einem Kunstdruckteil, Dt. Verlag fur Grundstoffindustrie, 1990 (in German).
  • [29] Z. Karoly, J. Szepvolgyi, Hollow alumina microspheres prepared by RF thermal plasma, Powder Technology 132/2-3 (2003) 211-215, DOI: https://doi.org/10.1016/S0032-5910(03)00077-9.
  • [30] W. Lee, S. Choi, S.M. Oh, D.W. Park, Preparation of spherical hollow alumina particles by thermal plasma, Thin Solid Films 529 (2013) 394-397, DOI: https://doi.org/10.1016Zj.tsf.2012.05.048.
  • [31] N.V. Kulkarni, S. Karmakar, S.N. Asthana, A.B. Nawale, A. Sheikh, S.P. Patole, J.B. Yoo,V.L. Mathe, A.K. Das, S.V. Bhoraskar, Study on growth of hollow nanoparticles of alumina, Journal of Materials Science 46 (2011) 2212-2220, DOI: https://doi.org/10.1007/s10853-010-5059-2.
  • [32] Z. Su, X. Xi, Y. Hu, Q. Fei, S. Yu, H. Li, J. Yang, A new Al2O3 porous ceramic prepared by addition of hollow spheres, Journal of Porous Materials 21 (2014) 601-609, DOI: https://doi.org/10.1007/s10934-014- 9806-7.
  • [33] J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Al-Al2O3 syntactic foams - Part I: Effect of matrix strength and hollow sphere size on the quasi- static properties of ALA206/ALO3 syntactic foams, Materials Science and Engineering: A 582 (2013) 415-422, DOI: https://doi.org/10.1016/j.msea.2013.05.081.
  • [34] J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380-ALO3 syntactic foams, Journal of Materials Science 49 (2014) 1267-1278, DOI: https://doi.org/10.1007/s10853-013-7810- y.
  • [35] R. Pampuch, Modern ceramic materials, AGH Publishing House, Cracow, 2005 (in Polish).
  • [36] R.W. Grimshaw, A.B. Searle, The chemistry and physics of clays and allied ceramic materials, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf1b6b0-78ff-4e97-a372-707278587d0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.