PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of AERMOD model in air quality (PM10) impact assessment of selected opencast mines in The Jharia Coalfield, Jharkhand, India

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study mainly delineates the application of AERMOD to evaluate PM10 concentrations for the selected opencast mines in The Jharia coalfield. AERMOD estimated PM10 concentration profiles were developed on the basis of evaluated emission rates of salient coal mining activities. While comparing these estimated values with monitored values of PM10, the evaluated indices of agreement were found to be 0.86, 0.84 and 0.88 during winter and 0.94, 0.68 and 0.87 during summer for the Katrasgarh, Muraidih and Rajapur opencast mines, respectively. In a like manner, performance evaluation of AERMOD evaluated concentrations over actual field concentration using a set of five statistical tools, indicated more or less fairly good prediction for both the seasons. Further, USEPA AP-42 based emission factor data for more or less identical mining activities were also used for AERMOD run in order to evaluate PM10 profiles. Correlation analysis indicated 71–89% and 62–85% model accuracy for winter and summer, respectively.
Rocznik
Strony
5--21
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Department of Environmental Science and Engineering, IIT (ISM), Dhanbad
autor
  • Department of Environmental Science and Engineering, IIT (ISM), Dhanbad
Bibliografia
  • [1] JONES T., The role of environmental impact assessment in coal production and utilization, Nat. Res. Forum, 1993, 17, 170.
  • [2] KESARKAR A.P., DALVI M., KAGINALKAR A., OJHA A., Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India, Atm. Environ., 2007, 41, 1976.
  • [3] SCHWARTZ J., Air pollution and daily mortality. A review and meta analysis, Environ. Res., 1994, 64, 36.
  • [4] CHAPMAN R.S., WATKINSON W.P., DREHER K.L., COSTA D.L., Ambient particulate matter and respiratory and cardiovascular illness in adults. Particle-borne transition metals and the heart–lung axis, Environ. Toxic. Pharm., 1997, 4, 331.
  • [5] GAUTAM S., PRUSTY B.K., PATRA A.K., Pollution due to particulate matter from mining activities, Rec. Odr. Razv., 2012, 5, 53.
  • [6] BEELEN R., STAFOGGIA M., RAASCHOU-NIELSEN O., ANDERSEN Z.J., XUN W.W., KATSOUYANNI K., DIMAKOPOULOU K., BRUNEKREEF B., WEINMAYR G., HOFFMANN B., Long-term exposure to air pollution and cardiovascular mortality. An analysis of 22 European cohorts, Epidem., 2014, 25, 368.
  • [7] BELL M.L., ZANOBETTI A., DOMINICI F., Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis, Am. J. Epidemiol., 2013, 143.
  • [8] TRENBERTH K.E., FASULLO J.T., KIEHL J., Earth’s global energy budget, Bull. Am. Met. Soc., 2009, 90, 311.
  • [9] JERRETT M., ARAIN A., KANAROGLOU P., BECKERMAN B., POTOGLOU D., SAHSUVAROGLU T., MORRISON J., GIOVIS C., A review and evaluation of intra urban air pollution exposure models, J. Exp. Sci. Environ. Epidemiol., 2005, 15, 185.
  • [10] MOKHTAR M.M., HASSIM M.H., TAIB R.M., Health risk assessment of emissions from a coal-fired power plant using AERMOD modeling, Proc. Saf. Environ. Prot., 2014, 92, 476.
  • [11] MICHANOWICZ D.R., SHMOOL J.L.C., TUNNO B.J., TRIPATHY S., GILLOOLY S., KINNEE E., CLOUGHERTY J.E., A hybrid land use regression/ AERMOD model for predicting intra-urban variation in PM2.5, Atm. Environ., 2016, 131, 307.
  • [12] GRAZZIOTIN P., MORVAN H., HARGREAVES D., CYBIS H., ARIOT P., TURKIENICZ B., Validation and sensitivity testing of City Zoom-AERMOD model, 5th International Symposium on Computational Wind Engineering (CWE 2010) Chapel Hill, North Carolina, USA, 2010, May 23–27.
  • [13] U.S. EPA. A review of Methods for Measuring Fugitive PM10 Emission Rates, EPA-454/R-93-037, Emission standards Division, Office of Air and Radiation, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, U.S., 1993.
  • [14] COX W.M., TIKVART J.A., A statistical procedure for determining the best performing air quality simulation model, Atm. Environ., 1990, 24A, 2387.
  • [15] WEIL J.C., SYKES R.I., VENKATRAM A., Evaluating air quality models. Review and outlook, J. Appl. Met., 1992, 31, 1121.
  • [16] OLESEN H., Ten years of harmonization activities. Past, present, and future, 7th International Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes, Belgirate, Italy, 2001, May 28–31.
  • [17] HANNA S.R., STRIMAITIS D.G., CHANG J.C., Hazard Response Modeling Uncertainty (A quantitative method). User’s Guide for Software for Evaluating Hazardous Gas Dispersion Models, Air Force Engineering and Service Center, Tyndall Air Force Base, Florida, 1991, 1.
  • [18] ROOD A.S., Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset, Atm. Environ., 2014, 89, 707.
  • [19] GHOSE M.K., MAJEE S.R., Sources of air pollution due to coal mining and their impacts in the Jharia coalfield, Environ. Int., 2000, 26, 81.
  • [20] CHADWICK M.G., HIGHTON N.H., LINDMAN N., Environmental impacts of coal mining and utilization, Pergamon Press, 1987, 295.
  • [21] MOON K.J., HAN J.S., GHIM Y.S., KIM Y.J., Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia, Environ. Int., 2008, 34, 654.
  • [22] HOTA P., BEHERA B., Coal mining in Odisha. An analysis of impacts on agricultural production and human health, Extr. Ind. Soc., 2015, 2, 683.
  • [23] COWHERD C., Measurements of fugitive dust emission from haul roads, Report No. EPA-600/7–79. Research Triangle Park, NC, Table 4 USEPA Industrial Environmental Research Lab, 1979.
  • [24] CHAULYA S.K., CHAKRABORTY M.K., AHMAD M., SINGH R.S., BONDYOPADHAY C., MONDAL G.C., PAL D., Development of empirical formulae to determine emission rate from various opencast coal mining operations, Water, Air, Soil Poll., 2002, 140, 21.
  • [25] CHAKRABORTY M.K., AHMAD M., SINGH R.S., BANDOPADHYAY C., CHAULYA S.K., Determination of the emission rate from various opencast mining operations, Environ. Model. Soft., 2002, 17, 467.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b40f106-acef-4a16-a4dd-531f819c986f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.