PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infuence of collars on reduction in scour depth at two piers in a tandem confguration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bridge failure, due to local scour at bridge pier foundations, has become a critical issue in river and bridge engineering, which might lead to transportation disruption, loss of lives and economic problems. A practical solution to prevent bridge collapses is the implementation of scour mitigation methods around bridge foundations. Based on an experimental perspective, this study is focused on the infuence of the size and position of circular collars from the sediment bed on scour depth at two tandem piers. To meet this end, long-lasting experiments are performed under clear-water conditions using uniform sand for bed materials. Compared to the adjacent position of the collar on the bed, placing the collars below the bed would increase the delay time of scour at the piers up to four times. However, regardless of the delay time, the observations indicate that locating the collars on the initial bed surface results in maximum reduction in scour depths around the piers. It was found that diminishing the fow intensity has a dramatic impact on the scour reduction at the piers, so that maximum reduction in scour depths at piers increased on average from 20 to 70% with the reduction in the fow intensity from 0.95 to 0.9.
Czasopismo
Rocznik
Strony
229--242
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • Laboratory of Hydraulic Constructions, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
  • Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • Laboratory of Hydraulic Constructions, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
  • Laboratory of Hydraulic Constructions, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
Bibliografia
  • 1. Amini A, Asadi Parto A (2017) 3D numerical simulation of flow field around twin piles. Acta Geophys 65(6):1243–1251. https://doi.org/10.1007/s11600-017-0094-x
  • 2. Arneson PF, Zevenbergen LA, Lagasse LW (2012) Evaluating scour at bridges. Hydraulic engineering circular no. 18 (HEC-18) (report no. FHWA NHI 01-001). Federal Highway Administration, Washington, DC
  • 3. Ataie-Ashtiani B, Beheshti AA (2006) Experimental investigation of clear-water local scour at pile groups. J Hydraul Eng 132(10):1100–1104. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1100)
  • 4. Chabert J, Engeldinger P (1956) Study of scour around bridge piers. Report prepared for the Laboratoire National d’Hydraulique
  • 5. Chen SC, Tfwala S, Wu TY, Chan HC, Chou HT (2018) A hooked-collar for bridge piers protection: flow fields and scour. Water 10(9):1251. https://doi.org/10.3390/w10091251
  • 6. Chiew YM (1984) Local scour at bridge piers. Doctoral dissertation, University of Auckland
  • 7. Dey S (1997a) Local scour at piers, part I: a review of developments of research. Int J Sediment Res 12(2):23–46
  • 8. Dey S (1997b) Local scour at piers, part II: bibliography. Int J Sediment Res 12(2):47–57
  • 9. Dey S (2014) Fluvial hydrodynamics. Springer, Berlin
  • 10. Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121:869–876. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869)
  • 11. Ettema R (1980) Scour at bridge piers. Report no. 216. University of Auckland, Auckland, New Zealand
  • 12. Ettema R, Nakato T, Muste MVI (2006) An illustrated guide for monitoring and protecting bridge waterways against scour (No. Project TR-515). IIHR-Hydroscience & Engineering, University of Iowa
  • 13. Guo J, Suaznabar O, Shan H, Shen J (2012) Pier scour in clear-water conditions with non-uniform bed materials (No. FHWA-HRT-12-022). Turner-Fairbank Highway Research Center, McLean
  • 14. Hannah CR (1978) Scour at pile groups. Report no. 78-3. Canterbury University, Canterbury, New Zealand
  • 15. Heidarpour M, Afzalimehr H, Izadinia E (2010) Reduction of local scour around bridge pier groups using collars. Int J Sediment Res 25(4):411–422. https://doi.org/10.1016/S1001-6279(11)60008-5
  • 16. Houwing EJ, Van Rijn LC (1998) In situ erosion flume (ISEF): determination of bed-shear stress and erosion of a kaolinite bed. J Sea Res 39(3–4):243–253
  • 17. Johnson PA, Hey RD, Brown ER, Rosgen DL (2002) Stream restoration in the vicinity of bridges. J Am Water Resour Assoc 38(1):55–67. https://doi.org/10.1111/j.1752-1688.2002.tb01534.x
  • 18. Karimaei Tabarestani M, Zarrati AR (2019) Local scour depth at a bridge pier protected by a collar in steady and unsteady flow. In: Proceedings of the Institution of Civil Engineers—water management. Thomas Telford Ltd, London, pp 1–11. https://doi.org/10.1680/jwama.18.00061
  • 19. Keshavarzi A, Shrestha CK, Melville BW, Khabbaz H, Ranjbar-Zahedani M, Ball J (2018) Estimation of maximum scour depths at upstream of front and rear piers for two tandem circular columns. Environ Fluid Mech 18(2):537–550. https://doi.org/10.1007/s10652-017-9572-6
  • 20. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017a) Splitter plate as a flow-altering pier scour countermeasure. Acta Geophys 65(5):957–975. https://doi.org/10.1007/s11600-017-0084-z
  • 21. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017b) Interference of an upstream pier on local scour at downstream piers. Acta Geophys 65(1):29–46. https://doi.org/10.1007/s11600-017-0004-2
  • 22. Khodashenas SR, Shariati H, Esmaeeli K (2018) Comparison between the circular and square collar in reduction of local scouring around bridge piers. In: E3S web of conferences. EDP sciences, vol 40, p 03002
  • 23. Kim HS, Nabi M, Kimura I, Shimizu Y (2014) Numerical investigation of local scour at two adjacent cylinders. Adv Water Resour 70:131–147. https://doi.org/10.1016/j.advwatres.2014.04.018
  • 24. Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(12):1302–1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)
  • 25. Lança R, Fael C, Cardoso A (2010) Assessing equilibrium clear water scour around single cylindrical piers. In: Proceedings of the international conference on fluvial hydraulic (river flow), Braunschweig, Germany, September 8–10
  • 26. Lança R, Fael C, Maia R, Pêgo JP, Cardoso AH (2013) Clear-water scour at pile groups. J Hydraul Eng 139(10):1089–1098. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000770
  • 27. Lança RMM, Simarro G, Fael CMS, Cardoso AH (2015) Effect of viscosity on the equilibrium scour depth at single cylindrical piers. J Hydraul Eng 142(3):06015022. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001102
  • 28. Masjedi A, Bejestan MS, Esfandi A (2010) Experimental study on local scour around single oblong pier fitted with a collar in a 180 degree channel bend. Int J Sediment Res 25(3):304–312. https://doi.org/10.1016/S1001-6279(10)60047-9
  • 29. Melville BW (1984) Live-bed scour at bridge piers. J Hydraul Eng 110(9):1234–1247. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:9(1234)
  • 30. Melville BW, Chiew YM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 114(10):1210–1226. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  • 31. Melville BW, Sutherland AJ (1988) Design method for local scour at bridge piers. J Hydraul Eng 114(10):1210–1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
  • 32. Memar S, Zounemat-Kermani M, Beheshti A, De Cesare G, Schleiss AJ (2018) Investigation of local scour around tandem piers for different skew-angles. In: International conference on fluvial hydraulics (river flow), Lyon-Villerurbanne, France, September 5–8
  • 33. Moncada-M AT, Aguirre-Pe J, Bolivar JC, Flores EJ (2009) Scour protection of circular bridge piers with collars and slots. J Hydraul Res 47(1):119–126. https://doi.org/10.3826/jhr.2009.3244
  • 34. Monti R (1994) Indagine sperimentale delle caratteristiche fluidodinamiche del campo di moto intorno ad una pila circolare. Tesi di Dottorato di Ricerca, Politecnico di Milano, Milan, Italy (in Italian)
  • 35. Moreno M, Maia R, Couto L (2015) Effects of relative column width and pile-cap elevation on local scour depth around complex piers. J Hydraul Eng 142(2):04015051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001080
  • 36. Oliveto G, Hager WH (2002) temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811–820. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(811)
  • 37. Oliveto G, Hager WH (2005) Further results to time-dependent local scour at bridge elements. J Hydraul Eng 131(2):97–105. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(97)
  • 38. Pang ALJ, Skote M, Lim SY, Gullman-Strand J, Morgan N (2016) A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl Ocean Res 57:114–124. https://doi.org/10.1016/j.apor.2016.02.010
  • 39. Raudkivi AJ (1986) Functional trends of scour at bridge piers. J Hydraul Eng 112(1):1–13. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:1(1)
  • 40. Selamoglu M, Yanmaz AM, Koken M (2014) Temporal variation of scouring topography around dual bridge piers. In: Proceedings of the seventh international conference on scour and erosion, Perth, Western Australia
  • 41. Shen HW, Schneider VR, Karaki SS (1966) Mechanics of local scour. Report no. CER66HWS10. Colorado State University, Fort Collins, CO
  • 42. Sheppard DM, Miller W Jr (2006) Live-bed local pier scour experiments. J Hydraul Eng 132(7):635–642
  • 43. Sheppard DM, Melville B, Demir H (2013) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng 140(1):14–23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000800
  • 44. Tafarojnoruz A, Gaudio R, Grimaldi C, Calomino F (2010) Required conditions to achieve the maximum local scour depth at a circular pier. In: Proceeding XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, 14–17 September, Palermo, Italy, Farina, Palermo
  • 45. Tafarojnoruz A, Gaudio R, Calomino F (2012) Evaluation of flow-altering countermeasures against bridge pier scour. J Hydraul Eng 138(3):297–305. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000512
  • 46. Tanaka S, Yano M (1967) Local scour around a circular cylinder. In: Proceeding of 12th IAHR congress. International Association for Hydraulic Research, Delft, Netherlands
  • 47. Wang H, Tang H, Liu Q, Wang Y (2016) Local scouring around twin bridge piers in open-channel flows. J Hydraul Eng 142(9):06016008. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001154
  • 48. Zarrati AR, Gholami H, Mashahir MB (2004) Application of collar to control scouring around rectangular bridge piers. J Hydraul Res 42(1):97–103. https://doi.org/10.1080/00221686.2004.9641188
  • 49. Zarrati AR, Nazariha M, Mashahir MB (2006) Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. J Hydraul Eng 132(2):154–162. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(154)
  • 50. Zokaei M, Zarrati AR, Salamatian SA, Tabarestani MK (2013) Study on scouring around bridge piers protected by collar using low density sediment. Int J Civ Eng 11(3A):199–205
  • 51. Zounemat-Kermani M, Beheshti AA, Ataie-Ashtiani B, Sabbagh-Yazdi SR (2009) Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput 9(2):746–755. https://doi.org/10.1016/j.asoc.2008.09.006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70410cf2-2b49-4671-9487-e31f28c95aa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.