Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The leading cause of cancer-related mortality is breast cancer. Breast cancer detection at an early stage is crucial. Data on breast cancer can be diagnosed using a number of different Machine learning approaches. Automated breast cancer diagnosis using a Machine Learning model is introduced in this research. Features were selected using Convolutional Neural Networks (CNNs) as a classifier model, and noise was removed using Contrast Limited Adaptive Histogram Equalization (CLAHE). On top of that, the research compares five algorithms: Random Forest, SVM, KNN, Naïve Bayes classifier, and Logistic Regression. An extensive dataset of 3002 combined images was used to test the system. The dataset included information from 1400 individuals who underwent digital mammography between 2007 and 2015. Accuracy and precision are the metrics by which the system's performance is evaluated. Due to its low computing power requirements and excellent accuracy, our suggested model is shown to be quite efficient in the simulation results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 43 poz., fig., tab.
Twórcy
autor
- Al-Balqa Applied University, Information Technology Department, Jordan
autor
- Al-Balqa Applied University, Information Technology Department, Jordan
- Al-Balqa Applied University, Information Technology Department, Jordan
Bibliografia
- [1] Al-hazaimeh, O. M., Alomari, S. A., Alsakran, J., & Alhindawi, N. (2014). Cross correlation–new based technique for speaker recognition. International Journal of Academic Research, 6(3), 232-239. https://doi.org/10.7813/2075-4124.2014/6-3/A.33
- [2] Al-hazaimeh, O. M., Abu-Ein, A. A., Tahat, N. M., Al-Smadi, M. M. A., & Al-Nawashi, M. M. (2022). Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images. International Journal of Online & Biomedical Engineering, 18(13), 131-151. https://doi.org/10.3991/ijoe.v18i13.33985
- [3] Al-Hazaimeh, O. M., Al-Nawashi, M., & Saraee, M. (2019). Geometrical-based approach for robust human image detection. Multimedia Tools and Applications, 78, 7029-7053. https://doi.org/10.1007/s11042-018-6401-y
- [4] Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional neural networks. International Journal of Machine Learning and Computing, 9(5), 662-667. https://doi.org/10.18178/ijmlc.2019.9.5.855
- [5] Al-Nawashi, M., Al-Hazaimeh, O. M., & Saraee, M. (2017). A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Computing and Applications, 28(1), 565-572. https://doi.org/10.1007/s00521-016-2363-z
- [6] Alanazi, S. A., Kamruzzaman, M., Islam Sarker, M. N., Alruwaili, M., Alhwaiti, Y., Alshammari, N., & Siddiqi, M. H. (2021). Boosting breast cancer detection using convolutional neural network. Journal of Healthcare Engineering, 2021, 5528622. https://doi.org/10.1155/2021/5528622
- [7] Alhindawi, N., Al-Hazaimeh, O. M., Malkawi, R., & Alsakran, J. (2016). A topic modeling based solution for confirming software documentation quality. International Journal of Advanced Computer Science and Applications, 7(2), 200-206. https://doi.org/10.14569/IJACSA.2016.070227
- [8] Barrios, C. H. (2022). Global challenges in breast cancer detection and treatment. The Breast, 62(1), S3-S6. https:/doi.org/10.1016/j.breast.2022.02.003
- [9] Carlson, R. W., Allred, D. C., Anderson, B. O., Burstein, H. J., Carter, W. B., Edge, S. B., Erban, J. K., Farrar, W. B., Forero, A., Giordano, S. H., Goldstein, L. J., Gradishar, W. J., Hayes, D. F., Hudis, C. A., Ljung, B. M., Mankoff, D. A., Marcom, P. K., Mayer, I. A., McCormick, B., … Zellars, R. (2011). Invasive breast cancer. Journal of the National Comprehensive Cancer Network, 9(2), 136–222. https://doi.org/10.6004/jnccn.2011.0016
- [10] Chang, P. J., Asher, A., & Smith, S. R. (2021). A targeted approach to post-mastectomy pain and persistent pain following breast cancer treatment. Cancers, 13(20), 5191. https://doi.org/10.3390/cancers13205191
- [11] Desai, M., & Shah, M. (2021). An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and convolutional neural network (CNN). Clinical eHealth, 4, 1-11. https://doi.org/10.1016/j.ceh.2020.11.002
- [12] DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: a cancer journal for clinicians, 69(6), 438-451. https://doi.org/10.3322/caac.21583
- [13] Fatima, N., Liu, L., Hong, S., & Ahmed, H. (2020). Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access, 8, 150360-150376. https://doi.org/10.1109/ACCESS.2020.3016715
- [14] Gharaibeh, N., Abu-Ein, A. A., Al-hazaimeh, O. M., Nahar, K. M., Abu-Ain, W. A., & Al-Nawashi, M. M. (2023). Swin transformer-based segmentation and multi-scale feature pyramid fusion module for alzheimer's disease with Machine Learning. International Journal of Online & Biomedical Engineering, 19(4), 22-50. https://doi.org/10.3991/ijoe.v19i04.37677
- [15] Gharaibeh, N., Al-hazaimeh, O. M., Abu-Ein, A., & Nahar, K. (2021). A hybrid svm naïve-bayes classifier for bright lesions recognition in eye fundus images. International Journal on Electrical Engineering and Informatics, 13(3), 530-545. https://doi.org/10.15676/ijeei.2021.13.3.2
- [16] Gharaibeh, N., Al-Hazaimeh, O. M., Al-Naami, B., & Nahar, K. M. (2018). An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. International Journal of Signal and Imaging Systems Engineering, 11(4), 206-216. https://doi.org/10.1504/IJSISE.2018.10015063
- [17] Hall, K., Chang, V., & Mitchell, P. (2022). Machine learning techniques for breast cancer detection. 7th International Conference on Complexity, Future Information Systems and Risk COMPLEXIS (pp. 116-122). SciTePress. https://doi.org/10.5220/0011123200003197
- [18] Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161. https://doi.org/10.1016/j.eswa.2020.114161
- [19] Kharya, S., Dubey, D., & Soni, S. (2013). Predictive machine learning techniques for breast cancer detection. International journal of computer science and information Technologies, 4(6), 1023-1028.
- [20] Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415-2429. https://doi.org/10.1016/S0140-6736(16)32417-5
- [21] Lu, W., Jansen, L., Post, W., Bonnema, J., Van de Velde, J., & De Bock, G. (2009). Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: a meta-analysis. Breast Cancer Research and Treatment, 114, 403-412. https://doi.org/10.1007/s10549-008-0023-4
- [22] Ma'moun, A., Al-hazaimeh, O. M., Alhindawi, N., & Hayajneh, S. M. (2014). A dual curvature shell phased array simulation for delivery of high intensity focused ultrasound. Computer and Information Science, 7(3), 49-57. https://doi.org/10.5539/cis.v7n3p49
- [23] Mahmood, T., Arsalan, M., Owais, M., Lee, M. B., & Park, K. R. (2020). Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. Journal of clinical medicine, 9(3), 749. https://doi.org/10.3390/jcm9030749
- [24] Melekoodappattu, J. G., Dhas, A. S., Kandathil, B. K., & Adarsh, K. (2023). Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. Journal of Ambient Intelligence and Humanized Computing, 14, 11397-11406. https://doi.org/10.1007/s12652-022-03713-3
- [25] Nahar, K., Al-Hazaimeh, O., Abu-Ein, A., & Gharaibeh, N. (2020). Phonocardiogram classification based on machine learning with multiple sound features. Journal of Computer Science, 16(11), 1648-1656. https://doi.org/10.3844/jcssp.2020.1648.1656
- [26] Nahar, K., Alhindawi, N., Al-Hazaimeh, O., Alkhatib, R., & Al-Akhras, A. (2018). NLP and IR based solution for confirming classification of research papers. Journal of Theoretical and Applied Information Technology, 96(16), 5269-5279.
- [27] Nallamala, S. H., Mishra, P., & Koneru, S. V. (2019). Breast cancer detection using machine learning approaches. International Journal of Recent Technology and Engineering, 7(5S4), 478-481.
- [28] Nanda, K., Bastian, L. A., & Schulz, K. (2002). Hormone replacement therapy and the risk of death from breast cancer: a systematic review. American journal of obstetrics and gynecology, 186(2), 325-334. https://doi.org/10.1067/mob.2002.121077
- [29] Narod, S. A., Iqbal, J., Giannakeas, V., Sopik, V., & Sun, P. (2015). Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA oncology, 1(7), 888-896. https://doi.org/10.1001/jamaoncol.2015.2510
- [30] Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. Journal of Biomedical Science and Engineering, 6, 551-560. https://doi.org/10.4236/jbise.2013.65070
- [31] Rajakumari, R., & Kalaivani, L. (2022). Breast cancer detection and classification using deep CNN techniques. Intelligent Automation & Soft Computing, 32(2), 1089-1107. https://doi.org/10.32604/iasc.2022.020178
- [32] Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38, 35-44. https://doi.org/10.1023/B:VLSI.0000028532.53893.82
- [33] Rivera-Franco, M. M., & Leon-Rodriguez, E. (2018). Delays in breast cancer detection and treatment in developing countries. Breast cancer: basic and clinical research, 12. https://doi.org/10.1177/1178223417752677
- [34] Sivapriya, J., Kumar, A., Sai, S. S., & Sriram, S. (2019). Breast cancer prediction using machine learning. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 4879-4881. https://doi.org/10.35940/ijrte.D8292.118419
- [35] Svensson, B., Dylke, E., Ward, L., Black, D., & Kilbreath, S. L. (2020). Screening for breast cancer–related lymphoedema: self-assessment of symptoms and signs. Supportive Care in Cancer, 28, 3073-3080. https://doi.org/10.1007/s00520-019-05083-7
- [36] Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., & Houssami, N. (2020). Overview of radiomics in breast cancer diagnosis and prognostication. The Breast, 49, 74-80. https://doi.org/10.1016/j.breast.2019.10.018
- [37] Tanabe, K., Ikeda, M., Hayashi, M., Matsuo, K., Yasaka, M., Machida, H., Shida, M., Katahira, T., Imanishi, T., Hirasawa, T., Sato, K., Yoshida, H., & Mikami, M. (2020). Comprehensive serum glycopeptide spectra analysis combined with artificial intelligence (CSGSA-AI) to diagnose early-stage ovarian cancer. Cancers, 12(9), 2373. https://doi.org/10.3390/cancers12092373
- [38] Tiwari, M., Bharuka, R., Shah, P., & Lokare, R. (2020). Breast cancer prediction using deep learning and machine learning techniques. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3558786
- [39] Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. Ict Express, 6(4), 320-324. https://doi.org/10.1016/j.icte.2020.04.009
- [40] Vasundhara, S., Kiranmayee, B., & Suresh, C. (2019). Machine learning approach for breast cancer prediction. International Journal of Recent Technology and Engineering (IJRTE), 8(1), 2619-2625.
- [41] Wang, Z., Li, M., Wang, H., Jiang, H., Yao, Y., Zhang, H., & Xin, J. (2019). Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access, 7, 105146-105158. https://doi.org/10.1109/ACCESS.2019.2892795
- [42] Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. The British Journal of Radiology, 95(1130), 20211033. https://doi.org/10.1259/bjr.20211033
- [43] Yassin, N. I., Omran, S., El Houby, E. M., & Allam, H. (2018). Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine, 156, 25-45. https://doi.org/10.1016/j.cmpb.2017.12.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64888d7a-937f-43dc-8603-9d2e515f15a0