Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of mixed convection flow of a heat generating/absorbing fluid in the presence existence of Lorentz forces in a vertical micro circular subjected to a periodic sinusoidal temperature change at the surface has been studied taking the first-order slip and jump effects into consideration. The research analysis is carried out by considering a fully developed parallel flow and steady periodic regime. The governing equations, together with the constraint equations which arise from the definition of mean velocity and temperature, are written in a dimensionless form and mapped into equations in the complex domain. One obtains two independent boundary value problems, which provide the mean value and the oscillating term of the velocity and temperature distributions. These boundary value problems are solved analytically. A parametric study of some of the physical parameters involved in the problem is conducted. The results of this research revealed that the magnetic field has a damping impact on the flow and results in decreases in fluid velocity for both air and water. Furthermore, the presence of the heat generation parameter is seen to enhance the temperature distribution and this is reflected as an increase in the magnitude of the oscillation dimensionless velocity, whereas in the presence of heat absorption a reversed trend occurs.
Rocznik
Tom
Strony
1--21
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
- Department of Mathematics, Federal University Gashua Yobe State - NIGERIA
autor
- Department of Mathematics, Federal University Gashua Yobe State - NIGERIA
Bibliografia
- [1] Arpaci V.S. and Larsen P.S. (1984): Convection Heat Transfer. − Prentice Hall Inc., Upper Saddle River.
- [2] Baker I., Faw R.E. and Kulacki F.A. (1976): Post-accident heat removal part I: heat transfer within an internally heated non-boiling liquid layer. − Nucl. Sci. Eng., vol.61, pp.222-230.
- [3] Chambre P.L. (1957): Laminar boundary layer with distributed heat sources or sinks. − Appl. Sci. Res. Sec. A4, 39.
- [4] Chamkha A.J. (1999): Hydromagnetic three- dimensional free convection on a vertical stretching surface with heat generation or absorption. − Int. J. Heat Fluid Flow, vol.20, pp. 84-92.
- [5] Foraboschi F.P. and Federico I.D. (1964): Heat transfer in laminar flow of non-Newtonian heat generating fluids. − Int. J. Heat Mass Transf. vol.7, pp.315.
- [6] Modejski J. (1963): Temperature distribution in channel flow with friction. − Int. J. Heat Mass Transf. vol.6, pp.49.
- [7] Ostrach S. (1952): Laminar natural convection and heat transfer of fluids with and without heat sources in channels with constant with constant wall temperature. − NASA Tech. Note 2863.
- [8] Ostrach S. (1954): Combined natural and force convection ow and heat transfer of fluids with and without heat sources in channels with linearly varying wall temperatures. − NACA, TN 3141.
- [9] Ozisik M.N. (1993): Heat Conduction. − 2nd edn. Wiley, New York.
- [10] Sparrow E.M. and Gregg J.L. (1960): Newly quasi-steady free-convection heat transfer in gases. − J. Heat Mass Transf. vol.82, pp.258-260.
- [11] Jha B.K., Ajibade A.O. and Daramola D.A. (2014): Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary condition: steady-periodic regime. − Afr. Mat. vol.26, pp.529-543.
- [12] Jha B.K. and Ajibade A.O. (2009): Free convective of heat generating/absorbing fluid between vertical porous plates with periodic heat input. − Int. Commun. Heat Mass Transf. vol.36, pp.624-631.
- [13] Jha B.K. and Aina Babatunde (2016): Impact of heat generation/absorption on MHD mixed convection flow in a vertical tube having time periodic boundary condition: steady periodic regime. − Heat Pipe Sci. Technol., vol.7, No.1-2, pp.123-147.
- [14] Sparrow E.M. and Gregg J.L. (1960): Newly quasi-steady free-convection heat transfer in gases. − J. Heat Mass Transf. Trans. ASME Ser., vol.82, pp.258-260.
- [15] Chung P.M. and Anderson A.D. (1961): Unsteady laminar free convection. − ASME J. Heat Mass Transf, vol.83, pp.473-478.
- [16] Yang J.W., Scaccia C. and Goodman J. (1974): Laminar natural convection about vertical plates with oscillatory surface temperature. − Trans. ASME J. Heat Transfer, vol.96, pp.9-14.
- [17] Nanda R.J. and Sharma V.P. (1963): Free convection laminar boundary layer in oscillatory flow. − J. Fluid Mech., vol.15, pp.419-428.
- [18] Bar-Cohen A. and Rohsenow W.M. (1984): Thermally optimum spacing of vertical natural convection cooled parallel plates. − ASME J. Heat Transfer, vol.106, pp.116-123.
- [19] Wang C.Y. (1988): Free convection between vertical plates with periodic heat input. − ASME J. Heat Transfer, vol.110, pp.508-511.
- [20] Lage J.L. and Bejan A. (1993): The resonance of natural convection in an enclosure heated periodically from the side. − Int. J. Heat Mass Transfer, vol.36, pp.2027-2038.
- [21] Antohe B.V. and Lage J.L. (1996): Amplitude effect on convection induced by time periodic boundary conditions. − Int. J. Heat Mass Transf., vol.39, pp.1121-1133.
- [22] Kwak H.S., Kvwahara J.M. and Hyun J.M. (1998): Resonant enhancement of natural convection heat transfer in a square enclosure. − Int. J. Heat Mass Transf., vol.41, pp.2837-2846.
- [23] Barletta A. and Zanchini E. (2002): Time-periodic laminar mixed convection in an inclined channel. − Int. J. Heat Mass Transf., vol.46, pp.551-563.
- [24] Barletta A. and Rossi di Schio E. (2004): Mixed convection flow in a vertical circular duct with time periodic boundary conditions: steady-periodic regime. − Int. J. Heat Mass Transfer, vol.47, pp.3187-3195.
- [25] Makinde O.D. (2009): Analysis of non-Newtonian reactive flow in a cylindrical pipe. − ASME - Journal of Applied Mechanics, vol.76, 034502 (1-5).
- [26] Chinyoka T. and Makinde O.D. (2012): On transient flow of a reactive variable viscosity third-grade fluid through a cylindrical pipe with convective cooling. − Meccanica, vol. 47, pp.667-685.
- [27] Chinyoka T., Makinde O.D. and Eegunjobi A.S. (2013): Entropy analysis of unsteady magnetic flow through a porous pipe with buoyancy effects. − Journal of Porous Media, vol.16, No.9, pp.823-836.
- [28] Singh G. and Makinde O.D. (2014): Axisymmetric slip flow on a vertical cylinder with heat transfer. − Sains Malaysiana, vol.43, No.3, pp.483-489.
- [29] Jha B.K. and AinaBabatunde (2016): MHD mixed convection flow in a vertical pipe with time periodic boundary condition: steady periodic regime. − Int. J. Fluid Mech. Res., pp.350-367.
- [30] Chen C.K. and Weng H.C. (2005): Natural convection in a vertical microchannel. − J. Heat Transfer, vol.127. pp.1053-1056.
- [31] Jha B.K. and AinaBabatunde (2015): Mathematical modelling and exact solution of steady fully developed mixed convection flow in a vertical micro-porous-annulus. − Journal of Afrika Matematika, vol.26, pp.1199-1213.
- [32] Sadeghi M., Sadeghi A. and Saidi M.H. (2014): Gaseous slip flow mixed convection in vertical microducts of constant but arbitrary geometry. − AIAA Journal of Thermophysics and Heat Transfer, vol.28, No.4, pp.771-784.
- [33] Avci M. and Aydin O. (2009): Mixed convection in a vertical microannulus between two concentric microtubes. − J. Heat Transfer Trans. ASME 131: 014502.
- [34] Sadeghi M. and Baghani M.H. Saidi (2014): Gaseous slip flow mixed convection in vertical microducts with constant axial energy input. − ASME Journal of Heat Transfer, vol.136, No.3, 032501.
- [35] Weng H.C. and Jian S.J. (2012): Developing mixed convection in a vertical microchannel. − Adv. Sci. Lett. 5, pp.1-6.
- [36] Jha B.K. and AinaBabatunde (2018): Fully developed mixed convection flow in a vertical microtube with time periodic heating boundary condition. − Multidiscipline Modeling in Materials and Structures, vol.14, No.4, pp.787-808.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3222ee18-571f-4417-a225-64bdd3f3aea3