PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antibacterial properties of copper and its alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the work is analysis of the knowledge extent on the bactericidal activity of copper and its alloys. Design/methodology/approach: Analysis of publications on the antibacterial properties of copper in the engineering and medical journals, taking also into account publications on the earliest documented employment of copper as the bactericide or medicine. Findings: Analysis of the investigation results presented in more than 350 scientific publications and reports worked out under commission from the Ministry of Health, including 312 scientific publications from the years 1892-1973, indicate to the antimicrobial action of copper and its alloys, which killing bacteria and viruses slows down growth of the microorganisms, and especially of: cobacillus, Legionella pneumophila, Salmonella, Staphylococcus aureus, poliovirus. Research limitations/implications: Application of the acquired research results in hospitals, outpatients’ clinics, and other public medical centres, will make it possible to reduce morbidity resulting from infections, especially of patients after serious medical treatment, operations, or after the complex antibiotic cure which has led them to decline of immunity. Practical implications: Reduction of health care costs is possible in every country by implementation of the acquired investigation results, as a consequence of the decreased treatment costs, by shortening the patients’ stay in a hospital. According to the assessment of the Department of Health of the United Kingdom these savings total to 1 billion pounds a year. Originality/value: Implementation of the analysis of results of investigations on the bactericidal activity of copper and copper based alloys will add to the increase of the patients’ safety level in the public medical centres.
Rocznik
Strony
53--60
Opis fizyczny
Twórcy
autor
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Konieczny, Z. Rdzawski, J. Stobrawa, W. Głuchowski, Hardness and electrical conductivity of cold rolled and aged CuTi4 alloy, Proceedings of the VIII Ukraine-Poland Conference of Young Scientists "Mechanics and Computer Science", Chmielnicki, Ukraine, 2011(in print).
  • [2] Z. Rdzawski, W. Głuchowski, J. Konieczny, Microstructure and properties of CuTi4 alloy, Proceedings of the 13th International Symposium IMSP’2010, Panukkale University, Denizli, Turkey, 2010, 955-962.
  • [3] J. Konieczny, Z. Rdzawski, Misorientation in rolled CuTi4 alloy, Archives of Materials Science and Engineering 52/1 (2011) 5-12.
  • [4] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Thermomechanical processing of CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 9-25.
  • [5] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, Thermomechanical treatment of low-alloy copper alloys of the kind CuCo2Be and CuCo1NiBe, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 161-168.
  • [6] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
  • [7] W. Głuchowski, J.P. Stobrawa, Z.M. Rdzawski, K. Marszowski, Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 40-49.
  • [8] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The microstructure and mechanical properties of the alloy CuZn30 after recrystallizion annealing, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 15-24.
  • [9] B. Leszczyńska-Madej, M. Richert, Microstructure and properties of dynamically compressed copper Cu99.99, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 35-42.
  • [10] J.P. Stobrawa, Z.M. Rdzawski, W. Głuchowski, W. Malec, Microstructure evolution in CRCS processed strips of CuCr0,6 alloy, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 195-202.
  • [11] J. Konieczny, Ł. Kondziołka. I. Młodkowska-Przepiórowska, The investigation of microstructure and hardness of archaeological alloys, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 166-179.
  • [12] K. Sękowski, The origins of copper alloy casting, Proceedings of the Scientific Conference "Modern trends in non-ferrous metal foundry”, Foundry Research Institute, Cracow, 1997, 73.
  • [13] H.H.A. Dollwet, J.R.J. Sorenson, Historic uses of copper compounds in medicine, Trace Elements in Medicine 2/2 (1985) 80-87.
  • [14] R. Żukiel, S. Nowak, R. Jankowski, R. Piestrzeniewicz, Historical neurosurogical casuistic. Part I., Neuroskop 8 (2006) 9-15.
  • [15] M. Collins, Medieval Herbals: The Illustrative Traditions, The British Library and University of Toronto Press, London, 2000.
  • [16] M.L. Zaremba, J. Borowski, Medical microbiology, Third Edition, PZWL, Warsaw, 2004 (in Polish).
  • [17] The Management and Control of Hospital Acquired Infection in Acute NHS Trusts in England, National Audit Office, London, 2000.
  • [18] J.O. Noyce, H. Michels, C.W. Keevil, Inactivation of Influenza A virus on Copper versus Stainless Steel Surfaces, Applied and Environmental Microbiology 73/8 (2007) 2748-2750.
  • [19] G. Borkow, J. Gabbay, Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections, Current Chemical Biology 3 (2009) 272-278.
  • [20] C.E. Housecroft, E.C. Constable, Chemistry, Third Edition, Pearson Education Limited, Essex, 2006.
  • [21] K.D. Karlin, Metalloenzymes, structural motifs, and inorganic models, Science 261 (1993) 701-708.
  • [22] Y. Yoshida, S. Furuta, E. Niki, Effects of metal chelating agents on the oxidation of lipids induced by copper and iron, Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism 1210/1 (1993) 81-88.
  • [23] A. Lewis, C.W. Keevil, Antibacterial properties of alloys and its alloys in HVAC&R systems, International Copper Association, New York, 2004.
  • [24] R.B. Thurman, C.P. Gerba, The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses, CRC Critical Reviews in Environmental Control 18/4 (1989) 295-315.
  • [25] J.O. Noyce, H. Michels, C.W. Keevil, Inactivation of Influenza A virus on Copper versus Stainless Steel Surfaces, Applied and Environmental Microbiology 73/8 (2007) 2748- 2750.
  • [26] A. Ciszewski, T. Radomski, A. Szummer, Materials Science, Warsaw University of Technology Publishing House, Warsaw, 2003.
  • [27] S.A. Wilks, H. Michels, C.W. Keevil, The survival of Escherichia coli O157 on a range of metal surfaces, International Journal of Food Microbiology 105/3 (2005) 445-454.
  • [28] H. Kawakami, K. Yoshida, Y. Nishida, Y. Kikuchi, Y. Sato, Antibacterial properties of metallic elements for alloying evaluated with application of JIS, ISIJ International 48/9 (2008) 1299-1304.
  • [29] S.A. Wilks, H.T. Michels, C.W. Keevil, Survival of Listeria monocytogenes Scott A on metal surfaces: Implications for cross-contamination, International Journal of Food Microbiology 111/2 (2006) 93-98.
  • [30] H.T. Michels, S.A. Wilks, J.O. Noyce, C.W. Keevil, Copper Alloys for Human Infectious Disease Control, Proceedings of the Materials Science and Technology Conference, Pittsburgh, 2005.
  • [31] M.L. Gray, A.H. Killinger, Listeria monocytogenes and listeric infection, Bacteriology Review 30/2 (1966) 309-382.
  • [32] R.W. Armstrong, P.C. Fung, Brainstem encephalitis (Rhombencephalitis) due to Listeria monocytogenes: case report and review, Clinical Infectious Diseases 16/5 (1993) 689-702.
  • [33] S. Holland, E. Alfonso, D. Gelender, D. Heidegger, A. Mendelsohn, S. Ullman, D. Miller, Corneal ulcer due to Listeria monocytogenes, Cornea 6 (1987) 144-146.
  • [34] L. Whitelock-Jones, J. Carswell, K.C. Rassmussen, Listeria pneumonia. A case report, South African Medical Journal 75 (1989) 88-189.
  • [35] The Polish Copper Promotion Centre (http://miedz.org.pl/).
  • [36] D. Schoenen, G. Schlomer, Microbial contamination of water by pipe and tube materials. 3. Behaviour of Escherichia coli, Citrobacter freundii and Klebsiella pneumoniae. Zentralbl Hyg Umweltmed 188 (1989) 475- 480 (in German).
  • [37] S.M. Chang, M. Tien, Effects of Heavy Metal Ions on the Growth of Microorganisms, Bull. Inst. Chem., Adad. Sinica 16 (1969) 29-39.
  • [38] Z.A. Avakyan, I.L. Rabotnova, Determination of the Copper Concentration Toxic to Micro-Organisms, Microbiology 35 (1966) 682-687 (in Polish).
  • [39] F.H. Johnson, C.M. Carver, W.K. Harryman, Luminous Bacterial Auxanograms in Relation to Heavy Metals and Narcotics, Self-Photographed in Color, Journal of Bacte-riology 44/6 (1942) 703-715.
  • [40] L. Ladner, L. Lindstrom, Copper in society and the environment, Second Revised Edition, Environmental Research Group (MFG), 1999.
  • [41] L. Colobert, Sensitivity of poliomyelitis virus to catalytic systems generating free hydroxyl radicals, Revue de Pathologie Generale et de Physiologie Clinique 62 (1962) 551-555.
  • [42] V. Oivin, T. Zolotukhina, Action Exerted From a Distance by Metals on Infusoria, Bull. Biol. Med. Exptl. USSR 4 (1939) 39-40.
  • [43] G. Faúndez, M. Troncoso, P. Navarrete, G. Figueroa, Anti-microbial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni, BMC Microbiology 4 (2004) 1-7.
  • [44] Ki-Young Yoon, Jeong Hoon Byeon, Jae-Hong Park, Jungho Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Science of the Total Environment 373 (2007) 572-575.
  • [45] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomaterialia 4/3 (2008) 707 716.
  • [46] A.L. Casey, D. Adams, T.J. Karpanen, P.A. Lambert, B.D. Cookson, P. Nightingale, L. Miruszenko, R. Shillam, P. Christian, T.S.J. Elliott, Role of copper in reducing hospital environment contamination, Journal of Hospital Infection 74 (2010) 72-77.
  • [47] G. Grass, C. Rensing, M. Solioz, Metallic Copper as an Antimicrobial Surface, Applied Environmental Microbiology 77/5 (2011) 1541-1547.
  • [48] D.H. Nies, Microbial heavy metal resistance, Applied Microbiology and Biotechnology 51/6 (1999) 730-750.
  • [49] A. Mikolay, S. Huggett, L. Tikana, G. Grass, J. Braun, D.H. Nies, Survival of bacteria on metallic copper surfaces in a hospital trial, Applied Microbiology and Biotechnology 87 (2010) 1875-1879.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bbc4a57-9955-4f3a-bfdc-64db7e1828d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.