Tytuł artykułu
Identyfikatory
Warianty tytułu
CO2 absorption studies using aqueous solutions of humic acid salts
Języki publikacji
Abstrakty
Zaprezentowano wyniki badań dotyczących absorpcji CO2 przy użyciu wodnych roztworów soli kwasów humusowych. Zbadano potencjał soli potasowych (HmK) i amonowych (HmA) kwasów humusowych w wychwytywaniu CO2 z syntetycznych gazów spalinowych zawierających około 14% v/v CO2. Wyniki wykazały, że chociaż sole kwasów humusowych wykazują stosunkowo niską zdolność absorpcji w porównaniu z powszechnie stosowanymi roztworami amin (np. MEA), oferują one inne korzyści dla środowiska. W przeciwieństwie do roztworów amin, sole kwasów humusowych nie wymagają regeneracji po absorpcji CO2, a ich nasycone roztwory mogą być potencjalnie stosowane w rolnictwie jako nawozy organiczne. Badania te sugerują, że substancje humusowe mogą odgrywać rolę w wychwytywaniu CO2, chociaż ich wydajność wymaga poprawy, potencjalnie poprzez zastosowanie dodatków zwiększających stopień absorpcji i zmniejszających pienienie.
The study explores the absorption of CO2 using aqueous solutions of humic acid salts. It investigates the potential of potassium (HmK) and ammonium (HmA) salts in capturing CO2 from synthetic flue gases containing approximately 14% v/v CO2. The results showed that while humic acid salts demonstrate a relatively low absorption capacity compared to commonly used amine solutions (e.g., MEA), they offer environmental benefits. Unlike amine solutions, humic acid salts do not require regeneration post-absorption, and the saturated solutions can potentially be used in agriculture as organic fertilizers. This research suggests that humic substances could play a role in CO2 capture, although their efficiency needs improvement, potentially through the use of additives to enhance absorption rates and reduce foaming.
Czasopismo
Rocznik
Tom
Strony
443--447
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Instytut Technologii Paliw i Energii
autor
- Instytut Technologii Paliw i Energii
autor
- Instytut Technologii Paliw i Energii
Bibliografia
- [1] Strona internetowa Rady Europejskiej: Fit for 55. https://www.consilium.eu-ropa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (dostęp 17.10.2024).
- [2] US Department of Commerce, N. Homepage of Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases. https://gml.noaa.gov/ccgg/trends/ global.html (dostęp 17.10.2024).
- [3] Climate Change: Atmospheric Carbon Dioxide|NOAA Climate.gov. http:// www.climate.gov/news-features/un-derstanding-climate/climate-change-atmospheric-carbon-dioxide (dostęp 17.10.2024).
- [4] Ducroux R., Jean-Baptiste P., Technologies, Methods and Modelling for CO2 Capture. In Greenhouse Gas Control Technologies 7; Rubin E.S., Keith D.W., Gilboy C.F., Wilson M., Morris T., Gale J., Thambimuthu K, Eds., Elsevier Science Ltd., Oxford, UK, 2005, 1835-1839, ISBN 978-0-08-044704-9.
- [5] Matito-Martos I., Sepúlveda C., Gómez C., Acién G., Perez-Carbajo J., Delgado J.A., Águeda V.I., Ania C., Parra J.B., Calero S. et al., Potential of CO2 Capture from Flue Gases by Physicochemical and Biological Methods: A Comparative Study. "Chem. Eng. J." 2021,417,128020, https://doi. org/10.1016/j.cej.2020.128020.
- [6] Borhani T.N., Wang M., Role of Solvents in CO2 Capture Processes: The Review of Selection and Design Methods. Renew. Sustain. "Energy Rev." 2019, 114, 109299, https://doi. org/10.1016/j.rser.2019.109299.
- [7] Olajire A.A., CO2 Capture and Separation Technologies for End-of-Pipe Applications, "A Review. Energy" 2010, 35, 2610-2628, https://doi.org/10.1016/j.energy.2010.02.030.
- [8] Inc, N.E. Petra Nova, https://www.nrg.com/case-studies/petra-nova.html (dostęp 02.02.2023).
- [9] Stéphenne K., Start-up of World's First Commercial Post-Combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. "Energy Procedia" 2014, 63, 6106-6110, https://doi.org/10.1016/j.egy-pro.2014.11.642.
- [10] Mokhatab S., Poe W.A., Mak J.Y., Chapter 6 - Natural Gas Treating. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Mokhatab S., Poe W.A., Mak J.Y., Eds., Gulf Professional Publishing: Boston, MA, USA, 2015, 181-222, ISBN 978-0-12-801499-8.
- [11] Bernhardsen I.M., Knuutila H.K., A Review of Potential Amine Solvents for CO2 Absorption Process: Absorption Capacity, Cyclic Capacity and pKa. "Int. J. Greenh. Gas Control" 2017, 61, 27-48, https://doi.org/10.1016/j.ijggc.2017.03.021.
- [12] Budhwani N., Vaidya P.D., Sinha R., Chugh P., New Amine Blends for Improved CO2 Separation: A Study on Reaction Kinetics and Vapor-Liquid Equilibrium. "Chem. Eng. Commun." 2017, 204, 557-562, https://doi.org/10.1080/00986445.2017.1 288620.
- [13] Kohl A.L., Gas Purification, 5th ed.; Gulf Professional Publishing: Houston, TX, USA, 1997, ISBN 978-0-88415-220-0.
- [14] Buvik V., Høisæster K.K., Vevelstad S.J., Knuutila H.K., A Review of Degradation and Emissions in Post-Combustion CO2 Capture Pilot Plants. "Int. J. Greenh. Gas Control" 2021, 106, 103246, https://doi.org/10.1016/j.ijggc.2020.103246.
- [15] Morken A.K., Pedersen S., Kleppe E.R., Wisthaler A., Vernstad K., Ullestad, Ø., Flø, N.E., Faramarzi L., Hamborg E.S., Degradation and Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad. "Energy Procedia" 2017, 114, 1245-1262, https://doi.org/10.1016/j.egypro.2017.03.1379.
- [16] Krzemień A., Więckol-Ryk A., Smoliński A., Koteras A., Więcław-Solny L., Assessing the Risk of Corrosion in Amine-Based CO2 Capture Process. "J. Loss Prev. Process Ind." 2016, 43, 189-197, https://doi.org/10.1016/j.jlp.2016.05.020.
- [17] Spietz T., Dobras S., Chwoła T., Wilk A., Krótki A., Więcław-Solny L., Experimental Results of Amine Emission from the CO2 Capture Process Using 2-Amino-2-Methyl-1 -Propanol (AMP) with Piperazine (PZ). "Int. J. Greenh. Gas Control" 2020, 102, 103155, https://doi.org/10.1016/j.ijggc.2020.103155.
- [18] Gadikota G., Carbon Mineralization Pathways for Carbon Capture, Storage and Utilization. "Commun. Chem." 2021, 4, 23, https://doi.org/10.1038/S42004-021-00461-x.
- [19] Hills C.D., Tripathi N., Carey P.J., Mineralization Technology for Carbon Capture, Utilization, and Storage. "Front. Energy Res." 2020, 8, 142.
- [20] Wang W., Xie Q., An S., Bakhshian S., Kang Q., Wang H., Xu X., Su Y., Cai J., Yuan B., Pore-Scale Simulation of Multiphase Flow and Reactive Transport Processes Involved in Geologic Carbon Sequestration. "Earth-Sci. Rev." 2023, 247, 104602, https://doi.org/10.1016/j.earscirev.2023.104602.
- [21] Ćwik A., Casanova I., Rausis K., Zarębska K., Utilization of High-Calcium Fly Ashes through Mineral Carbonation: The Cases for Greece, Poland and Spain. "J. CO2 Util." 2019, 32, 155-162, https://doi.org/10.1016/j.jcou.2019.03.020.
- [22] Dindi A., Quang D.V., Vega L.F., Nashef E., Abu-Zahra M.R.M., Applications of Fly Ash for CO2 Capture, Utilization, and Storage. "J. CO2 Util." 2019, 29, 82-102, https://doi.org/10.1016/j.jcou.2018.11.011.
- [23] Ampong K., Thilakaranthna M.S., Gorim L.Y., Understanding the Role of Humic Acids on Crop Performance and Soil Health. "Front. Agron." 2022, 4, 848621, https://doi.org/10.3389/ fagro.2022.848621.
- [24] Yang F., Antonietti M., Artificial Humic Acids: Sustainable Materials against Climate Change. "Adv. Sci." 2020, 7, 1902992, https ://doi.org/10.1002/ad vs.201902992.
- [25] Zara M., Ahmad Z., Akhtar J., Shahzad K., Sheikh N., Munir S., Extraction and Characterization of Humic Acid from Pakistani Lignite Coals. Energy Sources Part Recovery Util. Environ. Eff. 2017,39, 1159-1166, https://doi.org/10.1080/15567036.2017.1 307886.
- [26] Jia S., Sun Z., Chen L, Wang M., Feng R., Characteristics of CO2 Circulating Absorption by Sodium Humate and Potassium Carbonate. In Proceedings of the 2019 2nd Asia Conference on Energy and Environment Engineering (ACEEE), Hiroshima, Japan, 8-10 June 2019, 30-34.
- [27] Sun Z.G., Xie H.Y, Xu Z.P., CO2 Sequestration in Mixtures of Sodium Humate and Waste Gypsum. "Appl. Mech. Mater." 2013, 448-453, 634-637, https://doi.org/10.4028/www.scientific.net/AMM.448-453.634.
- [28] Sun Z., Tang B., Xie H., Treatment of Waste Gases by Humic Acid. "Energy Fuels" 2015, 29, 1269-1278, https://doi. org/10.1021/ef502299k.
- [29] Sun Z.G., Xie H.Y, Yang L., Method for absorbing and fixing carbon dioxide by using humate and aqueous ammonia, CN102847426A, Jan. 02, 2013, https://patents.google.com/patent/CN102847426A/en (dostęp 17.10.2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384ef312-adbf-4aed-a913-b69f262d9489