PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiwavelets and multiwavelet packets of Legendre functions in the direct method for solving variational problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical technique for solving the linear problems of the calculus of variations is presented in this paper. Multiwavelets and multiwavelet packets of Legendre functions are used as basis functions in the Ritz method of formulation. An operational matrix of integration of multiwavelets and multiwavelet packets is introduced and is used to reduce the calculus of variation problem to the solution of the system of algebraic equations. The algorithm is applied to the analysis of mechanic problems which are formulated as func-tionals. Two examples are considered in this paper. The first example concerns the stability problem of a Euler–Bernoulli beam and the second one presents the calculation of the extreme value of the functional which defines the potential energy of an elastic string. The presented method yields the approximate solutions which are convergent to accurate results.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Institute of Civil Engineering, Wrocław University of Technology, Wyb. Wyspiańskiego 27, Wrocław 53-370, Poland
autor
  • Institute of Civil Engineering, Wrocław University of Technology, Wyb. Wyspiańskiego 27, Wrocław 53-370, Poland
  • Institute of Civil Engineering, Wrocław University of Technology, Wyb. Wyspiańskiego 27, Wrocław 53-370, Poland
Bibliografia
  • [1] B.K. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, Journal of Computational Physics 182 (2002) 149–190.
  • [2] B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM Journal on Mathematical Analysis 24 (1993) 246–262.
  • [3] A. Averbuch, M. Israeli, L. Vozovoi, Solution of time-dependent diffusion equations with variable coefficients using multiwavelets, Journal of Computational Physics 150 (1999) 394–424.
  • [4] C.F. Chen, C.H. Hsiao, A Walsh series direct method for solving variational problems, Journal of the Franklin Institute 300 (1975) 265–280.
  • [5] C.F. Chen, C.H. Hsiao, Time-domain synthesis via Walsh functions, IEE Proceedings 122 (1975) 565–570.
  • [6] C.K. Chui, J. Lian, A study on orthonormal multiwavelets, Applied Numerical Mathematics 20 (1996) 273–298.
  • [7] C.K. Chui, L. Montefusco, L. Puccio, Wavelets: Theory, Algorithms and Applications, Academic Press, Inc., San Diego, 1994. p. 33.
  • [8] S. Corrington Murlan, Solution of differentional and integral equations with Walsh functions, IEEE Transactions on Circuit Theory CT-20 (1973) 470–476.
  • [9] G. Fann, G. Beylkin, R.J. Harrison, K.E. Jordan, Singular operators in multiwavelets bases, IBM Journal of Research and Development 48 (2) (2004) 161–171.
  • [10] I.M. Gelfand, S.W. Fomin, Calculus of Variations, Prentice- Hall, Englewood Cliffs, NJ, 1963.
  • [11] W. Glabisz, Direct Walsh-wavelet packet method for variational problems, Applied Mathematics and Computation 159 (2004) 769–781.
  • [12] W. Glabisz, Wavelet Packet Analysis in Mechanics Problems, Wrocław-University of Technology, Wrocław, 2004.
  • [13] J. Głazunow, Variational Methods of Solving Differential Equations, Gdańsk University of Technology, Gdańsk, 2000.
  • [14] I.R. Horng, J.H. Chou, Shifted Chebyshev direct method for solving variational problems, International Journal of Systems Science 16 (1985) 855–861.
  • [15] C.H. Hsiao, Haar wavelet direct method for solving variational problems, Mathematics and Computers in Simulation 64 (2004) 569–585.
  • [16] C.H. Hsiao, Haar wavelet approach to linear stiff systems, Mathematics and Computers in Simulation 64 (2004) 561–567.
  • [17] C. Hwang, Y.P. Shih, Laguerre series direct method for variational problems, Journal of Optimization Theory and Applications 39 (1983) 143–149.
  • [18] F. Keinert, Wavelets and Multiwavelets, Chapman & Hall/ CRC Press Company, Boca Raton, 1994.
  • [19] F. Khellat, S.A. Yousefi, The linear Legendre mother wavelets operational matrix of integration and its application, Journal of the Franklin Institute 343 (2006) 181–1990.
  • [20] J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics, Springer-Verlag, Berlin, Heidelberg, 1976.
  • [21] M. Razzaghi, Shifted Jacobi series direct method for variational problems, International Journal of Systems Science 20 (1989) 1119–1129.
  • [22] M. Razzaghi, S. Yousefi, Legendre wavelets method for the solution of nonlinear problems in the calculus of variations, Mathematical and Computer Modeling 34 (2001) 45–54.
  • [23] M. Razzaghi, S. Yousefi, Legendre wavelets operational matrices of integration, International Journal Systems Science 32 (4) (2001) 495–502.
  • [24] M. Razzaghi, S. Yousefi, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation 53 (2000) 185–192.
  • [25] H.L. Resnikowff, R.O. Wells Jr., Wavelets Analysis: The Scalable Structure Information, Springer-Verlag, New York, 1998.
  • [26] I. Sadek, T. Abualrub, M. Abukhaled, A computational method for solving optimal control of a system of parallel beams using Legendre wavelets, Mathematical and Computer Modeling 45 (2007) 11253–11264.
  • [27] V. Strela, Multiwavelets: Theory and Applications, (Ph.D. thesis), Massachusetts Institute of Technology, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbc7ddc0-d6f9-43da-98ba-181aa8455a72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.