PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gauss Sums of Cubic Characters over Fpr, p Odd

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An elementary approach is shown which derives the values of the Gauss sums over Fpr, p odd, of a cubic character. New links between Gauss sums over different field extensions are shown in terms of factorizations of the Gauss sums themselves, which are then revisited in terms of prime ideal decompositions. Interestingly, one of these results gives a representation of primes p of the form 6k+1 by a binary quadratic form in integers of a subfield of the cyclotomic field of the pth roots of unity.
Słowa kluczowe
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Institute of Mathematics University of Zürich Zürich, Switzerland
autor
  • Department of Electronics Politecnico di Torino 10129 Torino, Italy
Bibliografia
  • [1] S. D. Adhikari, The early reciprocity laws: from Gauss to Eisenstein, in: Cyclotomic Fields and Related Topics, Bhaskaracharya Pratishthana, Pune, 2000, 55{74.
  • [2] E. Artin, Galois Theory, Notre Dame Univ., 1959.
  • [3] B. Berndt, R. J. Evans and H. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
  • [4] W. S. Burnside and A. W. Panton, The Theory of Equations with an Introduction to the Theory of Binary Quadratic Forms, Dover, New York, 1960.
  • [5] H. H. Chan, L. Long and Y. F. Yang, A cubic analogue of the Jacobsthal identity, Amer. Math. Monthly 116 (2011), 316{326.
  • [6] D. A. Cox, Galois Theory, Wiley, New York, 2004.
  • [7] R. Dedekind, Theory of Algebraic Numbers, Cambridge, London, 1996.
  • [8] R. Denomme, A history of Stickelberger's theorem, Senior Honors Thesis, Ohio State Univ., 2009.
  • [9] L. E. Dickson, Algebras and their Arithmetics, Dover, 1960.
  • [10] P. Garrett, Kummer, Eisenstein, computing Gauss sums as Lagrange resolvents, http://www.math.umn.edu/~garrett/m/v/kummer eis.pdf, 2010.
  • [11] C. F. Gauss, Disquisitiones Arithmeticae, Springer, New York, 1966.
  • [12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 2008.
  • [13] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1990.
  • [14] D. Jungnickel, Finite Fields, Structure and Arithmetics, Wissenschaftsverlag, Mannheim, 1993.
  • [15] S. A. Katre, Gauss{Jacobi sums and Stickelberger's theorem, in: Cyclotomic Fields and Related Topics, Bhaskaracharya Pratishthana, Pune, 2000, 75{92.
  • [16] R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
  • [17] G. B. Mathews, Theory of Numbers, Chelsea, 1980.
  • [18] R. A. Mollin, Advanced Number Theory with Applications, CRC Press, Boca Raton, FL, 2010.
  • [19] C. Monico and M. Elia, An additive characterization of fibers of characters on Fp, Int. J. Algebra 4 (2010), 109{117.
  • [20] D. Schipani and M. Elia, Gauss sums of the cubic character over F2m: an elementary derivation, Bull. Polish Acad. Sci. Math. 59 (2011), 11{18.
  • [21] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (1985), 483{494.
  • [22] L. Stickelberger, Ueber eine Verallgemeinerung der Kreistheilung, Math. Ann. 37 (1890), 321{367.
  • [23] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997.
  • [24] A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43{54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-211ac4e8-cdc4-4762-ac0c-1bde42422300
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.