Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The significant production of sewage sludge by wastewater treatment plants on a global scale and the lack of correspondence between housing development and the expansion of sanitation infrastructure indicate a genuine concern regarding environmental preservation. This study addresses the crucial issue of effective sewage sludge management and its environmental impact. In the context of searching for new drying methods that optimize energy use and effectively stabilize sewage sludge, this work investigated the drying behavior of sewage sludge from treatment plants in two northern Moroccan cities using a prototype of an indirect forced convection solar dryer. The drying experiments enabled the determination of drying kinetics as well as highlighted the influence of temperature and humidity on the drying rate. The characteristic drying curve (CDC) and its mathematical expression were determined using Van Meel’s formalism. Thermal diffusivity of wastewater sludge during drying was also investigated. Using Fick’s diffusion model, diffusion coefficients ranged between 0.59 × 10-9 m2/s and 1.43 × 10-9 m2/s, demonstrating an increase in effective diffusivity with rising temperature. The Arrhenius equation provided activation energy values of 16.80 kJ/mol for Oujda samples and 19.72 kJ/mol for Nador samples, indicating the effect of temperature on effective diffusivity. A new equation based on the Midilli-Kucuk model was proposed to predict the drying behavior under untested aerothermal conditions, considering drying temperature and the initial dryness. This study offers a comprehensive analysis of the drying kinetics and effective diffusivity of sewage sludge, providing valuable insights for designing large dryers for sludge management in WWTPs. This approach presents an optimal solution for drying and stabilizing sludge, contributing to environmental preservation efforts.
Wydawca
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Engineering & Applied Technologies Laboratory (LITA), Higher School of Technology - Beni Mellal, Sultan Moulay Slimane University, Morocco
autor
- Laboratory of Fluid Mechanics and Energetics (LMFE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Team of Solar Energy and Medicinal Plants EESPAM, Laboratory of Processes for Energy & Environment ProcEDE, Cadi Ayyad University Marrakesh, Morocco
autor
- Laboratory of Fluid Mechanics and Energetics (LMFE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
autor
- Laboratory of Fluid Mechanics and Energetics (LMFE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
autor
- Laboratory of Fluid Mechanics and Energetics (LMFE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
autor
- Laboratory LAMIGEP, Moroccan School of Engineering Sciences, Marrakesh, Morocco
autor
- Team of Solar Energy and Medicinal Plants EESPAM, Laboratory of Processes for Energy & Environment ProcEDE, Cadi Ayyad University Marrakesh, Morocco
Bibliografia
- 1. Aghfir, M., Akkad, S., Rhazi, M., Kane, C.S.E. and Kouhila M. 2008. Détermination Du Coefficient de Diffusion et de l’énergie d’activation de La Menthe Lors d’un Séchage Conductif En Régime Continu. Journal of Renewable Energies, 11(3). doi:10.54966/jreen.v11i3.90.
- 2. Ali, I., Abdelkader, L., El Houssayne, B., Mohamed, K. and El Khadir, L. 2016. Solar convective drying in thin layers and modeling of municipal waste at three temperatures. Applied Thermal Engineering, 108, 41–47. doi:10.1016/j.applthermaleng.2016.07.098.
- 3. Azeddine, F., Sergio, P.A., Angélique, L., El Khadir, L., Ali, I. and El Houssayne, B. 2023. Rheological behavior and characterization of drinking water treatment sludge from Morocco. Clean Technologies, 5(1). doi:10.3390/cleantechnol5010015.
- 4. Bahammou, Y., Lamsyehe, H., Tagnamas, Z., Kouhila, M., Lamharrar, A., Idlimam, A., Naji, A. 2022. Exergetic and Techno-Economic Analysis of Moroccan Horehound Leaves (Marrubium Vulgare L.) in Forced Convection Solar and Microwave Drying. Heat Transfer, 51(7). doi:10.1002/htj.22579.
- 5. Bahammou, Y., Tagnamas, Z., Lamharrar, A. and Idlimam A. 2019. Thin-Layer Solar Drying Characteristics of Moroccan Horehound Leaves (Marrubium Vulgare L.) under Natural and Forced Convection Solar Drying. Solar Energy, 188, 958–69. doi: 10.1016/j.solener.2019.07.003.
- 6. Belghit, A., Kouhila, M. and Boutaleb, B.C. 2000. Experimental study of drying kinetics by forced convection of aromatic plants. Energy Conversion and Management, 41(12). doi:10.1016/S0196-8904(99)00162-4.
- 7. Benhamou, A., Idlimam, A., Lamharrar, A., Benyoucef, B., and Kouhila, M. 2008. Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. Journal of Renewable Energies, 11(1). doi:10.54966/jreen.v11i1.58.
- 8. Bennamoun, L., and Belhamri, A. 2008. Study of heat and mass transfer in porous media: application to packed-bed drying. Fluid Dynamics and Materials Processing, 4(4).
- 9. Bougayr, E,H., Khadir, L.E., Idlimam, A., Fantasse A., Lamharrar, A., Kouhila, M., Abdenouri, N. and Berroug, F. 2023. Experimental study and modeling of drying kinetics and evaluation of thermal diffusivity of sewage sludge. Key Engineering Materials, 954. doi:10.4028/p-d2lnmZ.
- 10. Bougayr, E.H., Lakhal, E.K., Idlimam, A., Lamharrar, A., Kouhila, M. and Berroug, F. 2018. Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge. Applied Thermal Engineering, 143. doi:10.1016/j.applthermaleng.2018.07.048.
- 11. Doymaz, I. 2004. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61(3). doi:10.1016/S0260-8774(03)00142-0.
- 12. Fantasse, A., Khadir, L.E., Houssayne, B.E. and Idlimam, A. 2024. Solar greenhouse drying kinetics efficiency of hydroxide sludge in Marrakesh, Morocco. Advanced Engineering Forum, 51. doi:10.4028/p-bmu3yr.
- 13. Ferrasse, J.H., Arlabosse, P. and Lecomte, D. 2002. Heat, momentum, and mass transfer measurements in indirect agitated sludge dryer. Drying Technology, 20(4–5). doi:10.1081/DRT-120003755.
- 14. Hassini, L., Azzouz, S., Peczalski, R. and Belghith, A. 2007. Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1). doi:10.1016/j.jfoodeng.2006.01.025.
- 15. Jin, L.Y., Zhang, P.Y., Zhang, G.M. and Li, J. 2016. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalination and Water Treatment, 57(60). doi:10.1080/19443994.2016.1144085.
- 16. Al Kanej, Y., and Hammar, Y. 2016. A new natural method for sludge drying of wastewater treatment station – The case of Algeria. Desalination and Water Treatment, 57(54). doi:10.1080/19443994.2016.1157988.
- 17. Kouhila, M., Bahammou, Y., Lamsyehe, H., Moussaoui, H., Tagnamas, Z., Idlimam, A., Lamharrar, A. and Mouhanni, H. 2020. Cyclical variation of drying air temperature on mytilus galloprovincialis convective drying. Solar Energy, 211. doi:10.1016/j.solener.2020.10.020.
- 18. Kouhila, M., Kechaou, N., Otmani, M., Fliyou, M. and Lahsasni, S. 2002. Experimental study of sorption isotherms and drying kinetics of Moroccan eucalyptus globulus. Drying Technology, 20(10). doi:10.1081/DRT-120015582.
- 19. Krokida, M.K., Karathanos, V.T., Maroulis, Z.B. and Marinos-Kouris, D. 2003. Drying kinetics of some vegetables. Journal of Food Engineering, 59(4). doi:10.1016/S0260-8774(02)00498-3.
- 20. Lahnine, L., Idlimam, A., Mahrouz, M., Mghazli, S., Hidar, N., Hanine, H. and Koutit, A. 2016. Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process. Renewable Energy, 94. doi:10.1016/j.renene.2016.03.014.
- 21. Lecomte, D., Fudym, O., Carrère-Gée, C. Arlabosse, P.and Vasseur, J. 2004. Method for the design of a contact dryer-application to sludge treatment in thin film boiling. Drying Technology, 22(9). doi:10.1081/ldrt-200034229.
- 22. Léonard, A., Vandevenne, P., Salmon, T., Marchot, P. and Crine, M. 2004. Wastewater sludge convective drying: Influence of sludge origin. Environmental Technology, 25(9). doi:10.1080/09593330.2004.9619398.
- 23. Lopez, A., Iguaz, A., Esnoz, A. and Virseda, P. 2000. Thin-layer drying behaviour of vegetable wastes from wholesale market. Drying Technology, 18(4– 5). doi:10.1080/07373930008917749.
- 24. Malek, K., Skoczkowska, K. and Ulbrich, R. 2017. The influence of two types of disturbing elements for behavior of the bed in drum dryers. Inżynieria Ekologiczna, 18(4). doi:10.12912/23920629/74954.
- 25. Mardiyani, S.A. 2024. Drying kinetic behavior of dried salam leaves (Syzygium Polyanthum) based on forced convective solar drying and open sun drying. Ecological Engineering and Environmental Technology, 25(2): 190–98. doi:10.12912/27197050/176269.
- 26. Midilli, A., Kucuk, H. and Yapar, Z. 2002. A new model for single-layer drying. Drying Technology, 20(7). doi:10.1081/DRT-120005864.
- 27. Moussaoui, H., Bahammou, Y., Tagnamas, Z., Kouhila, M., Lamharrar, A. and Idlimam, A. 2021. Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy 168. doi:10.1016/j.renene.2020.12.046.
- 28. Ouaabou, R., Nabil, B., Ouhammou, M., Idlimam, A., Lamharrar, A., Ennahli, S., Hanine, H. and Mahrouz, M. 2020. Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry. Renewable Energy, 151. doi:10.1016/j.renene.2019.11.078.
- 29. Slim, R., Zoughaib, A. and Clodic, D. 2009. Characterization of sewage sludge water vapor diffusivity in low-temperature conductive drying. Journal of Porous Media, 12(12). doi:10.1615/JPorMedia.v12.i12.50.
- 30. Tagnamas, Z., Kouhila, M., Bahammou, Y., Lamsyehe, H., Moussaoui, H., Idlimam, A. and Lamharrar, A. 2022. Drying kinetics and energy analysis of carob seeds (Ceratonia Siliqua L.) convective solar drying. Journal of Thermal Analysis and Calorimetry, 147(3). doi:10.1007/s10973-021-10632-6.
- 31. Tagnamas, Z., Lamsyehe, H., Moussaoui, H., Bahammou, Y., Kouhila, M., Idlimam, A. and Lamharrar, A. 2021. Energy and exergy analyses of carob pulp drying system based on a solar collector. Renewable Energy, 163. doi:10.1016/j.renene.2020.09.011.
- 32. Żogała, A. 2016. Technological and environmental problems connected with thermal conversion of sewage sludge. Inżynieria Ekologiczna, 46. doi:10.12912/23920629/61472.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5283bab-4bbc-454c-83c9-d1a00c493e20