PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of the spatially fractionated radiation therapy in the management of advanced bulky tumors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatially fractionated radiation therapy (SFRT) refers to the delivery of a single large dose of radiation within the target volume in a heterogeneous pattern using either a custom GRID block, multileaf collimators, and virtual methods such as helical tomotherapy or synchrotron-based microbeams. The potential impact of this technique on the regression of bulky deep-seated tumors that do not respond well to conventional radiotherapy has been remarkable. To date, a large number of patients have been treated using the SFRT techniques. However, there are yet many technical and medical challenges that have limited their routine use to a handful of clinics, most commonly for palliative intent. There is also a poor understanding of the biological mechanisms underlying the clinical efficacy of this approach. In this article, the methods of SFRT delivery together with its potential biological mechanisms are presented. Furthermore, technical challenges and clinical achievements along with the radiobiological models used to evaluate the efficacy and safety of SFRT are highlighted.
Rocznik
Strony
123--135
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
  • Dept. of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Dept. of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Bibliografia
  • 1. Tao L, Rakfal S, Wu A. Comparison of integral doses in conventional 2D, conformal 3D and IMRT plans. Medical Physics. 2002;29(6):1211.
  • 2. Arabpour A, Shahbazi-Gahrouei D. Effect of Hypofractionation on Prostate Cancer Radiotherapy. International Journal of Cancer Management. 2017;10(10):e12204. https://doi.org/10.5812/ijcm.12204
  • 3. Shahbazi-Gahrouei D, Gookizadeh A, Sohrabi M, Arab Z. Normal tissues absorbed dose and associated risk in breast radiotherapy. Journal of Radiobiology. 2015;2(1).
  • 4. Peñagarícano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P. Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. Int J Radiat Oncol Biol Phys. 2010;76(5):1369-1375. https://doi.org/10.1016/j.ijrobp.2009.03.030
  • 5. Kaiser A, Mohiuddin MM, Jackson GL. Dramatic response from neoadjuvant, spatially fractionated GRID radiotherapy (SFGRT) for large, high-grade extremity sarcoma. Journal of Radiation Oncology. 2013;2(1):103-106. https://doi.org/10.1007/s13566-012-0064-5
  • 6. Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. High dose bystander effects in spatially fractionated radiation therapy. Cancer Letters. 2015;356(1):52-57. https://doi.org/10.1016/j.canlet.2013.10.032
  • 7. Mohiuddin M, Fujita M, Regine WF, Megooni AS, Ibbott GS, Ahmed MM. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys. 1999;45(3):721-727. https://doi.org/10.1016/S0360-3016(99)00170-4
  • 8. Saeb M, Shahbazi-Gahrouei D, Monadi S. Evaluation of targeted image-guided radiation therapy treatment planning system by use of american association of physicists in medicine task group-119 test cases. Journal of Medical Signals and Sensors. 2018;8(2):95. https://doi.org/10.4103/jmss.JMSS_44_17
  • 9. Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation: A pilot study. Cancer. 1990;66(1):114-118. https://doi.org/10.1002/1097-0142(19900701)66:1<114::AIDCNCR2820660121>3.0.CO;2-L
  • 10. Mohiuddin M, Stevens JH, Reiff JE, Huq MS, Suntharalingam N. Spatially fractionated (GRID) radiation for palliative treatment of advanced cancer. Radiation Oncology Investigations. 1996;4(1):41-47. https://doi.org/10.1002/(SICI)1520-6823(1996)4:1<41::AIDROI7>3.0.CO;2-M
  • 11. Mohiuddin M, Kudrimoti M, Regine W, Meigooni A, Zwicker R. Spatially fractionated radiation (SFR) in the management of advanced cancer. Int J Radiat Oncol Biol Phys. 2002;54:342-343. https://doi.org/10.1016/S0360-3016(02)03646-5
  • 12. Meigooni A, Malik U, Zhang H, et al. Grid: A location dependent intensity modulated radiotherapy for bulky tumors. Iranian Journal of Radiation Research (Print). 2005;2(4):167-174.
  • 13. Zwicker RD, Meigooni A, Mohiuddin M. Therapeutic advantage of grid irradiation for large single fractions. Int J Radiat Oncol Biol Phys. 2004;58(4):1309-1315. https://doi.org/10.1016/j.ijrobp.2003.07.003
  • 14. Buckey C, Stathakis S, Cashon K, et al. Evaluation of a commercially-available block for spatially fractionated radiation therapy. Journal of Applied Clinical Medical Physics. 2010;11(3). https://doi.org/10.1120/jacmp.v11i3.3163
  • 15. Ha JK, Zhang G, Naqvi SA, Regine WF, Cedric XY. Feasibility of delivering grid therapy using a multileaf collimator. Medical Physics. 2006;33(1):76-82. https://doi.org/10.1118/1.2140116
  • 16. Neuner G, Mohiuddin MM, Vander Walde N, et al. High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT. Int J Radiat Oncol Biol Phys. 2012;82(5):1642-1649. https://doi.org/10.1016/j.ijrobp.2011.01.065
  • 17. Cole AJ, McGarry CK, Butterworth KT, et al. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy. Physics in Medicine & Biology. 2013;58(23):8311. https://doi.org/10.1088/0031-9155/58/23/8311
  • 18. Jordan K, Francis W, Dar A, Yu E, Yartsev S, Chen J. SU‐C‐BRA‐01: Efficient Generation of Beamlet Arrays with Hybrid Multileaf Collimator for Grid Therapy. Medical Physics. 2011;38(6Part2):3368-3368. https://doi.org/10.1118/1.3611461
  • 19. Almendral P, Mancha PJ, Roberto D. Feasibility of a simple method of hybrid collimation for megavoltage grid therapy. Medical Physics. 2013;40(5):051712. https://doi.org/10.1118/1.4801902
  • 20. Zhang X, Penagaricano J, Yan Y, et al. Spatially fractionated radiotherapy (GRID) using helical tomotherapy. Journal of Applied Clinical Medical Physics. 2016;17(1). https://doi.org/10.1120/jacmp.v17i1.5934
  • 21. Zhang X, Penagaricano J, Yan Y, et al. Application of spatially fractionated radiation (GRID) to helical tomotherapy using a novel TOMOGRID template. Technology in Cancer Research & Treatment. 2016;15(1):91-100. https://doi.org/10.7785/tcrtexpress.2013.600261
  • 22. Narayanasamy G, Zhang X, Meigooni A, et al. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors. Acta Oncologica. 2017;56(8):1043-1047. https://doi.org/10.1080/0284186X.2017.1299219
  • 23. Wu X, Wright J, Gupta S, Pollack A. On modern technical approaches of three-dimensional high-dose lattice radiotherapy (LRT). Cureus. 2010;2(3). https://doi.org/10.7759/cureus.9
  • 24. Amendola BE, Perez N, Wu X, et al. Lattice radiotherapy with rapidarc for treatment of gynecological tumors: dosimetric and early clinical evaluations. Cureus. 2010;2(9). https://doi.org/10.7759/cureus.15
  • 25. Amendola BE, Perez NC, Wu X, Suarez JMB, Lu JJ, Amendola M. Improved outcome of treating locally advanced lung cancer with the use of Lattice Radiotherapy (LRT): A case report. Clinical and Translational Radiation Oncology. 2018;9:68-71. https://doi.org/10.1016/j.ctro.2018.01.003
  • 26. Jin J-Y, Zhao B, Kaminski JM, et al. A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiotherapy and Oncology. 2015;117(3):483-486. https://doi.org/10.1016/j.radonc.2015.07.047
  • 27. Schültke E, Balosso J, Breslin T, et al. Microbeam radiation therapy-grid therapy and beyond: a clinical perspective. The British Journal of Radiology. 2017;90(1078):20170073. https://doi.org/10.1259/bjr.20170073
  • 28. Slatkin DN, Spanne P, Dilmanian F, Sandborg M. Microbeam radiation therapy. Medical Physics. 1992;19(6):1395-1400. https://doi.org/10.1118/1.596771
  • 29. Grotzer M, Schültke E, Bräuer-Krisch E, Laissue J. Microbeam radiation therapy: clinical perspectives. Physica Medica. 2015;31(6):564-567. https://doi.org/10.1016/j.ejmp.2015.02.011
  • 30. Slatkin D, Spanne P, Dilmanian F, Gebbers J, Laissue J. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proceedings of the National Academy of Sciences. 1995;92(19):8783-8787. https://doi.org/10.1073/pnas.92.19.8783
  • 31. Keivan H, Shahbazi-Gahrouei D, Shanei A, Amouheidari A. Assessment of imprecise small photon beam modeling by two treatment planning system Algorithms. Journal of Medical Signals and Sensors. 2018;8(1):39. https://doi.org/10.4103/jmss.JMSS_28_17
  • 32. Keivan H, Shahbazi-Gahrouei D, Shanei A. Evaluation of dosimetric characteristics of diodes and ionization chambers in small megavoltage photon field dosimetry. International Journal of Radiation Research. 2018;16(3):311-321.
  • 33. Wu X, Ahmed M, Pollack A. On modern technical approaches of 3D high-dose lattice radiotherapy (LRT). Int J Radiat Oncol Biol Phys. 2009;75(3):S723. https://doi.org/10.1016/j.ijrobp.2009.07.1647
  • 34. Nobah A, Mohiuddin M, Devic S, Moftah B. Effective spatially fractionated GRID radiation treatment planning for a passive grid block. The British Journal of Radiology. 2015;88(1045):20140363. https://doi.org/10.1259/bjr.20140363
  • 35. Costlow HN, Zhang H, Das IJ. A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer. Medical Dosimetry. 2014;39(3):218-226. https://doi.org/10.1016/j.meddos.2014.02.004
  • 36. Chegeni N, Karimi AH, Jabbari I, Arvandi S. Photoneutron dose estimation in GRID therapy using an anthropomorphic phantom: A monte carlo study. Journal of Medical Signals and Sensors. 2018;8(3):175. https://doi.org/10.4103/jmss.JMSS_13_18
  • 37. Wang X, Charlton MA, Esquivel C, Eng TY, Li Y, Papanikolaou N. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy. Medical Physics. 2013;40(9):093901. https://doi.org/10.1118/1.4816653
  • 38. Karimi AH, Brkić H, Shahbazi-Gahrouei D, Haghighi SB, Jabbari I. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy. Applied Radiation and Isotopes. 2019;145:24-31. https://doi.org/10.1016/j.apradiso.2018.12.007
  • 39. Khosravi M, Shahbazi-Gahrouei D, Jabbari K, et al. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room. Radiation Protection Dosimetry. 2013;156(3):356-363. https://doi.org/10.1093/rpd/nct078
  • 40. Tajiki S, Gholami S, Esfahani M, et al. Photon and photon-neutron experimental dosimetry in Grid therapy with 18 MV photon beams. Journal of Radiotherapy in Practice.1-7. https://doi.org/10.1017/S1460396920000655
  • 41. Hopewell JW, Trott K-R. Volume effects in radiobiology as applied to radiotherapy. Radiotherapy and Oncology. 2000;56(3):283-288. https://doi.org/10.1016/S0167-8140(00)00236-X
  • 42. Marks H. Clinical experience with irradiation through a GRID. Radiology. 1952;58(3):338-342. https://doi.org/10.1148/58.3.338
  • 43. Reiff JE, Huq MS, Mohiuddin M, Suntharalingam N. Dosimetric properties of megavoltage grid therapy. Int J Radiat Oncol Biol Phys. 1995;33(4):937-942. https://doi.org/10.1016/0360-3016(95)00114-3
  • 44. Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M. Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technology in Cancer Research & Treatment. 2006;5(6):607-612. https://doi.org/10.1177/153303460600500608
  • 45. Asur RS, Sharma S, Chang C-W, et al. Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiation Research. 2012;177(6):751-765. https://doi.org/10.1667/RR2780.1
  • 46. Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? International Journal of Radiation Biology. 2018;94(8):696-707. https://doi.org/10.1080/09553002.2017.1398436
  • 47. Sathishkumar S, Dey S, Meigooni AS, et al. The impact of TNF-α induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technology in Cancer Research & Treatment. 2002;1(2):141-147. https://doi.org/10.1177/153303460200100207
  • 48. Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2014;763:39-44. https://doi.org/10.1016/j.mrfmmm.2014.03.004
  • 49. Sathishkumar S, Boyanovski B, Karakashian A, et al. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biology & Therapy. 2005;4(9):979-986. https://doi.org/10.4161/cbt.4.9.1915
  • 50. Kanagavelu S, Gupta S, Wu X, et al. In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res. 2014;182(2):149-162. https://doi.org/10.1667/RR3819.1
  • 51. Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Frontiers in Oncology. 2012;2:102. https://doi.org/10.3389/fonc.2012.00102
  • 52. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. The Journal of Immunology. 2005;174(12):7516-7523. https://doi.org/10.4049/jimmunol.174.12.7516
  • 53. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589-595. https://doi.org/10.1182/blood-2009-02-206870
  • 54. Edwards J, Shah P, Huhn J, et al. Definitive GRID and fractionated radiation in bulky head and neck cancer associated with low rates of distant metastasis. Int J Radiat Oncol Biol Phys. 2015;93(3):E334. https://doi.org/10.1016/j.ijrobp.2015.07.1399
  • 55. Gupta S, Zagurovskaya M, Wu X, Sathishkumar S, Awan S, Mohiuddin M. Spatially Fractionated Grid High-dose radiation-induced tumor regression in A549 lung adenocarcinoma xenografts: cytokines and ceramide regulators balance in abscopal phenomena. Sylvester Comprehensive Cancer Center. 2014;20.
  • 56. Griffin RJ, Koonce NA, Dings RPM, et al. Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiation Research. 2012;177(6):804-812. https://doi.org/10.1667/RR2784.1
  • 57. Peters ME, Shareef MM, Gupta S, et al. Potential utilization of bystander/abscopal-mediated signal transduction events in the treatment of solid tumors. Current Signal Transduction Therapy. 2007;2(2):129-143. https://doi.org/10.2174/157436207780619509
  • 58. Billena C, Khan AJ. A current review of spatial fractionation: back to the future? Int J Radiat Oncol Biol Phys. 2019;104(1):177-187. https://doi.org/10.1016/j.ijrobp.2019.01.073
  • 59. Kudrimoti M, Mohiuddin M, Ahmed M, et al. Use of high dose spatially fractionated radiation (GRID therapy) in management of large, poor prognostic stage III (> 10cms) soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 2004;60(1):S575. https://doi.org/10.1016/j.ijrobp.2004.07.564
  • 60. Somaiah N, Warrington J, Taylor H, Ahmad R, Tait D, Glees J. High dose spatially fractionated radiotherapy (SFR) using a megavoltage GRID in advanced lung tumors: Preliminary experience in UK. Int J Radiat Oncol Biol Phys. 2008;72(1):S490. https://doi.org/10.1016/j.ijrobp.2008.06.1439
  • 61. Suarez JMB, Amendola BE, Perez N, Amendola M, Wu X. The use of lattice radiation therapy (LRT) in the treatment of bulky tumors: a case report of a large metastatic mixed Mullerian ovarian tumor. Cureus. 2015;7(11).
  • 62. Amendola BE, Perez NC, Wu X, Amendola MA, Qureshi IZ. Safety and efficacy of lattice radiotherapy in voluminous non-small cell lung cancer. Cureus. 2019;11(3). https://doi.org/10.7759/cureus.4263
  • 63. Choi JI, Daniels J, Cohen D, Li Y, Ha CS, Eng TY. Clinical Outcomes of Spatially Fractionated GRID Radiotherapy in the Treatment of Bulky Tumors of the Head and Neck. Cureus. 2019;11(5). https://doi.org/10.7759/cureus.4637
  • 64. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical Physics. 1997;24(1):103-110. https://doi.org/10.1118/1.598063
  • 65. Gholami S, Nedaie HA, Longo F, Ay MR, Wright S, Meigooni AS. Is grid therapy useful for all tumors and every grid block design? Journal of Applied Clinical Medical Physics. 2016;17(2). https://doi.org/10.1120/jacmp.v17i2.6015
  • 66. Zhang H, Zhong H, Barth RF, Cao M, Das IJ. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Medical physics. 2014;41(2):021727. https://doi.org/10.1118/1.4862837
  • 67. Naqvi SA, Mohiuddin MM, Ha JK, Regine WF. Effects of tumor motion in GRID therapy. Medical physics. 2008;35(10):4435-4442. https://doi.org/10.1118/1.2977538
  • 68. Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Physics in Medicine & Biology. 2004;49(20):4825. https://doi.org/10.1088/0031-9155/49/20/012
  • 69. Ekstrand KE. The Hug-Kellerer equation as the universal cell survival curve. Physics in Medicine & Biology. 2010;55(10):N267. https://doi.org/10.1088/0031-9155/55/10/N01
  • 70. Suchowerska N, Ebert MA, Zhang M, Jackson M. In vitro response of tumour cells to non-uniform irradiation. Physics in Medicine & Biology. 2005;50(13):3041. https://doi.org/10.1088/0031-9155/50/13/005
  • 71. Butterworth KT, McGarry CK, Trainor C, O'Sullivan JM, Hounsell AR, Prise KM. Out-of-field cell survival following exposure to intensity-modulated radiation fields. Int J Radiat Oncol Biol Phys. 2011;79(5):1516-1522. https://doi.org/10.1016/j.ijrobp.2010.11.034
  • 72. Butterworth KT, McGarry CK, Trainor C, et al. Dose, dose-rate and field size effects on cell survival following exposure to nonuniform radiation fields. Physics in Medicine & Biology. 2012;57(10):3197. https://doi.org/10.1088/0031-9155/57/10/3197
  • 73. Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncologica. 2017;56(8):1048-1059. https://doi.org/10.1080/0284186X.2017.1299939
  • 74. McMahon SJ, Butterworth KT, Trainor C, et al. A kinetic-based model of radiation-induced intercellular signalling. PloS one. 2013;8(1):e54526. https://doi.org/10.1371/journal.pone.0054526
  • 75. Butterworth KT, Ghita M, McMahon SJ, et al. Modelling responses to spatially fractionated radiation fields using preclinical imageguided radiotherapy. The British Journal of Radiology. 2017;90(1069):20160485. https://doi.org/10.1259/bjr.20160485
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c52cd66-a079-44fb-9655-ac40d8589792
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.