PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Characterization of Xerogel Derived from Palm Kernel Shell Biochar and Comparison with Commercial Activated Carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomass is an inexpensive adsorbent that has attracted considerable interest. The sol-gel process produced xerogel from palm kernel shell biochar (PKSB). This study aimed to synthesize and characterize palm kernel shell biochar xerogel (PKSBX) and compare it with commercial (AC). The synthesized xerogel, raw material, and AC were characterized using different characterization, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Scanning Electron Microscopy (SEM). The FTIR spectrum analysis showed a wide range of bonds and confirmed the presence of C=C alkenes, amines N-H, and aromatic C-H functional groups. TGA analysis of samples was conducted at 10℃/min. The thermal degradation of the sample undergoes several setups of loss mass. The degrades occurred between 50200℃ first setups, second between 200–700℃, and third setups between 950–1000℃. The surface morphological structure of each sample has been defined and compared using SEM data, which is further confirmed by XRD data. On the basis of on the characterization findings, it can be determined that the xerogel obtained from the synthesis process using PKSB as the raw material exhibits favorable characteristics for its potential usage as an adsorbent.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 60 poz, rys., tab.
Twórcy
  • School of Chemical Engineering, College of Engineering, University Technology MARA, Shah Alam, Selangor, 40450, Malaysia
  • School of Chemical Engineering, College of Engineering, University Technology MARA, Shah Alam, Selangor, 40450, Malaysia
  • Renewable Energy Research Unit, Alhawija Institute, Northern Technical University, Iraq
  • School of Chemical Engineering, College of Engineering, University Technology MARA, Shah Alam, Selangor, 40450, Malaysia
autor
  • Faculty of Applied Sciences, University Technology MARA, 40450 Shah Alam, Selangor, Malaysia
  • Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq
  • School of Chemical Engineering, College of Engineering, University Technology MARA, Shah Alam, Selangor, 40450, Malaysia
  • Directorate of Climate Change Ministry of Environment, Iraq
  • Renewable Energy Research Unit, Alhawija Institute, Northern Technical University, Iraq
  • School of Chemical Engineering, College of Engineering, University Technology MARA, Shah Alam, Selangor, 40450, Malaysia
  • Oil Products Distribution Company, Salahuldeen Branch, Tikrit, Ministry of Oil, Iraq
Bibliografia
  • 1. Acevedo S., Giraldo L. and Moreno-Piraján J. C. 2020. Adsorption of CO2 on activated carbons prepared by chemical activation with cupric nitrate, ACS omega, 5(18), 10423–10432.
  • 2. Sass J. and Wunderlich R. 2022. Impact of Regulatory Requirements for Emission Trading Systems: An Analysis in a Stochastic Control Model.
  • 3. Shen M., Huang W., Chen M., Song B., Zeng G., and Zhang Y. 2020. (Micro) plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change, J. Clean. Prod., 254, 120138.
  • 4. Yu C.-H., Huang C.-H. and Tan C.-S. 2012. A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res., 12(5), 745–769.
  • 5. Aresta M. and Dibenedetto A. 2010. Industrial utilization of carbon dioxide (CO2), in Developments and innovation in carbon dioxide (CO2) capture and storage technology, Elsevier, 377–410.
  • 6. Zulkurnai N. Z., Ali U. F. M., Ibrahim N., and Manan N. S. A. 2017. Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES), in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12001.
  • 7. Zeng H., Qu X., Xu D. and Luo Y. 2022. Porous adsorption materials for carbon dioxide capture in industrial flue gas, Front. Chem., 10, 939701.
  • 8. Osagie C., Othmani A., Ghosh S., Malloum A., Esfahani Z. K., and Ahmadi S. 2021. Dyes adsorption from aqueous media through the nanotechnology: A review, J. Mater. Res. Technol., 14, 2195–2218.
  • 9. Lee J.-H. and Park S.-J. 2020. Recent advances in preparations and applications of carbon aerogels: A review, Carbon N. Y., 163, 1–18.
  • 10. Abd A. A., Othman M. R., and Kim J. 2021. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement, Environ. Sci. Pollut. Res., 28(32), 43329–43364.
  • 11. Ahmad M., Lim J. E., Zhang M., Rajapaksha A. U. 2014. Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99, 19–33.
  • 12. Ahmad M., Al-Wabel M. I., Vithanage M., Rajapaksha A. U., Kim H. S., Lee S. S. and Ok. Y. S. 2013. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes, Environ. Sci. Pollut. Res., 20, 8364–8373.
  • 13. Ahmad M., Lee S. S., Rajapaksha A. U., Vithanage M., Zhang, M. Cho J. S., Lee S.-E., Ok Y. S. 2013. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures, Bioresour. Technol., 143, 615–622.
  • 14. Vithanage M., Rajapaksha A. U., Tang X., Thiele-Bruhn S., Kim K. H., Lee S.-E., Ok Y. S. 2014. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar, J. Environ. Manage., 141, 95–103.
  • 15. Creamer A. E., Gao B. and Zhang M. 2014. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood, Chem. Eng. J., 249, 174–179.
  • 16. Sun Y., Bin Gao, Yao Y., Fang J. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, Chem. Eng. J., 240, 574–578.
  • 17. Ello A. S., de Souza L. K. C., Trokourey A. and Jaroniec M. 2013. Development of microporous carbons for CO2 capture by KOH activation of African palm shells, J. CO2 Util., 2, 35–38.
  • 18. Vargas D. P., Giraldo L., Silvestre-Albero J. and Moreno-Piraján J. C. 2011. CO2 adsorption on binderless activated carbon monoliths, Adsorption, 17, 497–504.
  • 19. González García A. S., González Plaza M., Rubiera González F. and Pevida García C. 2013. Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture,.
  • 20. Boujibar O., Souikny A., Ghamouss F., Achak O., Dahbi M., and Chafik T. 2018. CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells, J. Environ. Chem. Eng., 6(2), 1995–2002.
  • 21. Hao W., Björkman E., Lilliestråle M. and Hedin N. 2013. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2, Appl. Energy, 112, 526–532.
  • 22. Xu J., Shi J., Cui H., Yan N. and Liu Y. 2018. Preparation of nitrogen doped carbon from tree leaves as efficient CO2 adsorbent, Chem. Phys. Lett., 711, 107–112.
  • 23. Serafin J., Narkiewicz U., Morawski A. W., Wróbel R. J., and Michalkiewicz B. 2017. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions, J. CO2 Util., 18, 73–79.
  • 24. Guo L., Yang J., Hu G., Hu X., Wang L., Dong Y., DaCosta H., Fan M. 2016. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogendoped carbons produced from coconut shell, ACS Sustain. Chem. Eng., 4(5), 2806–2813.
  • 25. Chen J., Yang J., Hu G., Hu X., Li Z., Shen S., Radosz M., Fan M. 2016. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons, ACS Sustain. Chem. Eng., 4(3), 1439–1445.
  • 26. Yue L., Xia Q., Wang L., Wang L., DaCosta H., Yang J., Hu X. 2018. CO2 adsorption at nitrogendoped carbons prepared by K2CO3 activation of urea-modified coconut shell, J. Colloid Interface Sci., 511, 259–267.
  • 27. Parshetti G. K., Chowdhury S. and Balasubramanian R. 2015. Biomass derived low-cost microporous adsorbents for efficient CO2 capture, Fuel, 148, 246–254.
  • 28. Han J., Zhang L., Zhao B., Qin L., Wang Y. and Xing F. 2019. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption, Ind. Crops Prod., 128, 290–297.
  • 29. Huang G., Liu Y., Wu X. and Cai J.2019. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance, New Carbon Mater., 34(3), 247–257.
  • 30. Pang R., Lu T., Shao J., Wang L., Wu X., Qian X., Hu X. 2020. Highly efficient nitrogen-doped porous carbonaceous CO2 adsorbents derived from biomass, Energy & Fuels, 35(2), 1620–1628.
  • 31. Coromina H. M., Walsh D. A. and Mokaya R. 2016. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications, J. Mater. Chem. A, 4(1), 280–289.
  • 32. González B. and Manyà J. J. 2020. Activated olive mill waste-based hydrors as selective adsorbents for CO2 capture under postcombustion conditions, Chem. Eng. Process. Intensif., 149, 107830.
  • 33. Li K., Tian S., Jiang J., Wang J., Chen X. and Yan F. 2016. “Pine cone shell-based activated carbon used for CO 2 adsorption,” J. Mater. Chem. A, 4(14), 5223–5234.
  • 34. Deng S., Wei H., Chen T., Wang B., Huang J. and Yu G. 2014. Superior CO2 adsorption on pine nut shellderived activated carbons and the effective micropores at different temperatures, Chem. Eng. J., 253, 46–54.
  • 35. Li D., Ma T., Zhang R., Tian Y., and Qiao Y. 2015. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char, Fuel, 139, 68–70.
  • 36. Ding S. and Liu Y. 2020. Adsorption of CO2 from f lue gas by novel seaweed-based KOH-activated porous biochar, Fuel, 260, 116382.
  • 37. Zhao Z., Ma C., Chen F., Xu G., Pang R., Qian X., Shao J., Hu X. 2021. Water caltrop shell-derived nitrogendoped porous carbons with high CO2 adsorption capacity, Biomass and Bioenergy, 145, 105969. doi: https:// doi.org/10.1016/j.biombioe.2021.105969
  • 38. Li Q., Liu S., Peng W., Zhu W., Wang L., Chen F., Shao J., Hu X. 2020.Preparation of biomass-derived porous carbons by a facile method and application to CO2 adsorption, J. Taiwan Inst. Chem. Eng., 116, 128–136. doi: https://doi.org/10.1016/j.jtice.2020.11.001
  • 39. Deana Q., Nor Mohd R. N., Azil B. A., Hamasa K. and Nurul S. A. A. 2023. Adsorption of hydrogen sulphide (H2S) using xerogel synthesized from palm kernel shell biochar, Mater. Res. Proc., 29, 109–116. doi: https://doi.org/10.21741/9781644902516-14
  • 40. Imoisili P. E., Ukoba K. O. and Jen T.-C. 2020. Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel, J. Mater. Res. Technol., 9(1), 307–313.
  • 41. Lopes J. M., Mustapa A. N., Pantić M., Bermejo M. D., Martín Á., Novak Z., Knez Ž., Cocero M. J. 2017. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol, J. Supercrit. Fluids, 130, 17–22. doi: https:// doi.org/10.1016/j.supflu.2017.07.018
  • 42. Noraini N. M. R., Alias A. B., Qarizada D., Azman F. A. M., Rashid Z. A., and Hasan M. R. C. 2022. Synthesis and Characterization of Xerogel from Palm Kernel Shell Biochar, J. Mech. Eng., 11(1), 211–226. doi: https://doi.org/10.24191/jmeche.v11i1.23599
  • 43. Quan C., Zhou Y., Wu C., Xu G., Feng D., Zhang Y., Gao N. 2023. Valorization of solid digestate into activated carbon and its potential for CO2 capture, J. Anal. Appl. Pyrolysis, 169, 105874. doi: https:// doi.org/10.1016/j.jaap.2023.105874
  • 44. Of O. 2017. Characterization of activated carbon using chemical activation via microwave ultrasonic system ( Pencirian Karbon Teraktif Menggunakan Sistem Pengaktifan Kimia Melalui Ketuhar, 21(1), 159–165.
  • 45. Al Malki M., Yaser A. Z., Hamzah M. A. A. M., Zaini M. A. A., Latif N.A., Hasmoni S.H., Zakaria Z.A. 2023. Date Palm Biochar and Date Palm Activated Carbon as Green Adsorbent—Synthesis and Application, Curr. Pollut. Reports, 9(3), 374–390, doi: https://doi.org/10.1007/s40726-023-00275-6
  • 46. Yasin N. M. F. M., Meri N. H., Talib N., Ghani W. A. W. A. K., Rashid Z. A. and Alias A. B. 2021. Breakthrough Analysis of Empty Fruit BunchBased Hydrogel Biochar Composite (EFB-HBC) for Hydrogen Sulphide (H 2 S) Adsorption Study Removal, 200, ICoST, 216–225, doi: https://doi. org/10.2991/aer.k.201229.030
  • 47. Kumar A. and Jena H. M. 2016. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results Phys., 6, 651–658, doi: https://doi.org/10.1016/j.rinp.2016.09.012
  • 48. Supian M. A. F., Amin K. N. M., Jamari S. S. and Mohamad S. 2020. Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method, J. Environ. Chem. Eng., 8(1), 103024, doi: https://doi.org/10.1016/j.jece.2019.103024
  • 49. Kunusa W. R., Iyabu H. and Abdullah R. 2021. FTIR, SEM and XRD analysis of activated carbon from sago wastes using acid modification, J. Phys. Conf. Ser., 1968(1). doi: https://doi. org/10.1088/1742-6596/1968/1/012014
  • 50. Alias A. B. and Qarizada D. 2022. Comparison of hydrogel- and xerogel - based sorbent from Empty Fruit Bunch, 118(2), 49–60. doi: https://doi. org/10.5604/01.3001.0016.2579
  • 51. Maulina S. and Mentari V. A. 2019. Comparison of Functional Group and Morphological Surface of Activated Carbon from Oil Palm Fronds Using Phosphoric Acid (H3PO4) and Nitric Acid (HNO3) as an Activator, IOP Conf. Ser. Mater. Sci. Eng., 505(1), doi: https://doi.org/10.1088/1757-899X/505/1/012023
  • 52. Amosa M. K. 2015. Environmental Nanotechnology, Monitoring & Management Process optimization of Mn and H 2 S removals from POME using an enhanced empty fruit bunch (EFB) -based adsorbent produced by pyrolysis, Environ. Nanotechnology, Monit. & Manag., 493–105. doi: https://doi. org/10.1016/j.enmm.2015.09.002
  • 53. Glaser R., Iyabu H., Abdullah R. 2021. FTIR, SEM and XRD analysis of activated carbon from sago wastes using acid modification FTIR, SEM and XRD analysis of activated carbon from sago wastes using acid modification, doi: https://doi. org/10.1088/1742-6596/1968/1/012014
  • 54. Research article production and characterization of activated carbon from. 2018. 5(1–8).
  • 55. Wang X., Zhang Y., Jiang H., Song Y., Zhou Z. and Zhao H. 2016. Author ’s Accepted Manuscript, Mater. Lett., doi: https://doi.org/10.1016/j. matlet.2016.07.081
  • 56. Segovia-sandoval S. J., Pastrana-martínez L. M., Ocampo- R., Morales-Torres S. and Berber-Mendoza M. S. 2019. Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: effect of operating parameters, Sep. Purif. Technol., 116341. doi: https://doi.org/10.1016/j.seppur.2019.116341
  • 57. Lee S., Lee S. and Roh J. 2021. Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis, 1–11.
  • 58. Shah M. S., Tsapatsis M., and Siepmann J. I. 2017. Hydrogen Sul fi de Capture : From Absorption in Polar Liquids to Oxide, Zeolite, and Metal − Organic Framework Adsorbents and Membranes, doi: https://doi.org/10.1021/acs.chemrev.7b00095
  • 59. Guzel G. and Deveci H. 2020. Effect of Aging Solvents on Physicochemical and Thermal Properties of Silica Xerogels Derived from Steel Slag, 15861591. doi: https://doi.org/10.1002/slct.201903345
  • 60. Meri N. H., Alias A. B., Rashid Z. A. and Wan W. A. Karim Ghani A.B. 2018. Effect of Chemical Washing Pre-treatment of Empty Fruit Bunch (EFB) biochar on Characterization of Hydrogel Biochar composite as Bioadsorbent, IOP Conf. Ser. Mater. Sci. Eng., 358, 1–7. doi: https://doi. org/10.1088/1757-899X/358/1/012018
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf6deb3c-85b1-4e27-a4ea-db1b5985406f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.