PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sieci metalo-organiczne jako multifunkcjonalne materiały przyszłości : mechanochemiczne podejście do syntezy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Metal-organic frameworks as multifunctional materials of the future : mechanochemical approach to synthesis
Języki publikacji
PL
Abstrakty
EN
Metal-organic frameworks (MOFs) are a relatively new class of advanced inorganic-organic materials. Due to their modular structures and possible incorporation of various properties, that materials find more and more applications in many fields of science and industry. MOFs are coordination polymers, i.e. compounds with coordination bonds propagating infinitely in at least one dimension. Their characteristic feature is the presence of potential free spaces, i.e. pores. The free spaces often appear after proper activation, e.g. thermal activation. Other common properties of MOFs include for instance large specific surface areas and pore volumes, modifiable size and chemical environment of the pores, and network flexibility. All these properties result in the use of MOFs in e.g. selective sorption, separation or storage of gases, heterogeneous catalysis, design and fabrication of sensors, etc. During more than twenty years of the history of MOFs, many methods of their synthesis have been developed, including the most popular in solution at elevated temperatures (e.g. solvothermal method). Nevertheless, the activity of pro-ecological environments and the requirements set by international organizations encourage scientists to create new methods of synthesis, which, according to the guidelines presented by the 12 principles of green chemistry, will be safer, less aggressive, less toxic and less energy-consuming. One of the answers to meet these requirements is the use of mechanosynthesis. Mechanochemical synthesis relies on the supply of energy to a system by mechanical force, by grinding or milling. By combining or transforming solids in this way, the presence of a solvent, which is most often the main source of contamination and waste, can be minimised or completely excluded. Mechanical force is typically used for purposes other than MOF synthesis, e. g. catalyst grinding. Nevertheless, the use of mechanical force in synthesis is becoming more and more popular. The most important advantages of this approach, apart from its environmental impact, are very high efficiency (usually close to 100%) and drastically reduced reaction time. Of course, there are examples where these advantages are not observed. In such cases, mechanosynthetic modifications are introduced, such as e.g. addition of small amount of liquid (Liquid-Assisted Grinding) and/or a small addition of simple inorganic salt (Ion- and Liquid-Assisted Grinding). Furthermore, new instrument setups are being developed to monitor reaction mixtures in situ during mechanosynthesis, e.g. by use of such techniques as powder X-ray diffraction and Raman spectroscopy. This enables valuable insights into mechanisms and allows for mechanosynthesis optimization.
Rocznik
Strony
645--666
Opis fizyczny
Bibliogr. 49 poz., rys., schem., wykr.
Twórcy
  • Wydział Chemii Uniwersytetu Jagiellońskiego w Krakowie, ul. Gronostajowa 2, 30-387 Kraków
Bibliografia
  • [1] K.D. Karlin, Progress In Inorganic Chemistry, Wiley Blackwell, 2014.
  • [2] R. Xu, Y. Xu, Modern Inorganic Synthetic Chemistry: Second Edition, Elsevier Inc., 2017.
  • [3] J.C. Taylor, Advances In Chemistry Research, Nova Science Publishers, Inc., 2018.
  • [4] R.B. Stuart, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M.P. Suh, J. Reedijk, Pure Appl. Chem., 2013, 85, 1715.
  • [5] O.L. Ortiz, L.D. Ramírez, Coordination polymers and metal organic frameworks: Properties, types and applications, Nova Science Publishers, Inc., 2012.
  • [6] X. Pei, Y. Chen, S. Li, S. Zhang, X. Feng, J. Zhou, B. Wang, Chin. J. Chem., 2016, 34 (2), 157.
  • [7] P. Kumar, A. Pournara, K.-H. Kim, V. Bansal, S. Rapti, M.J. Manos, Prog. Mater. Sci., 2017, 86, 25.
  • [8] J. Gascon, A. Corma, F. Kapteijn, F.X. Llabres I Xamena, ACS Catal., 2014, 4, 361.
  • [9] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Chem. Rev., 2012, 112, 1232.
  • [10] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev., 2012, 112, 1105.
  • [11] P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, Chem. Soc. Rev., 2014, 43, 5913.
  • [12] A.J. Howarth, A.W. Peters, N.A. Vermeulen, T.C. Wang, J.T. Hupp, O.K. Farha, Chem. Mater., 2017, 29 (1), 26.
  • [13] S. Rashidi, J.A. Esfahani, N. Karimi, Renew. Sust. Energ. Rev., 2018, 91, 229.
  • [14] L. Ding, A.O. Yazaydin, Microporous Mesoporous Mater., 2013, 182, 185.
  • [15] Y. Kinoshita, I. Matsubara, Y. Saito, Bull. Chem. Soc. Jpn., 1959, 7, 741.
  • [16] O.M. Yaghi, H. Li, J. Am. Chem. Soc., 1995, 117 (41), 10401.
  • [17] H. Li, M. Eddaoudi, M. O’Keffe, O.M. Yaghi, Nature, 1999, 402 (6759), 276.
  • [18] J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc., 2006, 128 (4), 1304.666
  • [19] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc., 2008, 130 (42), 13850.
  • [20] S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem., 2009, 1, 695.
  • [21] T.D. Bennett, A.K. Cheetham, Acc. Chem. Res., 2014, 47, 1555.
  • [22] K. Roztocki, D. Jędrzejowski, M. Hodorowicz, I. Senkovska, S. Kaskel, D. Matoga, Cryst. Growth Des., 2018, 18, 488.
  • [23] D. Prochowicz, K. Sokołowski, I. Justyniak, A. Kornowicz, D. Fairen-Jimenez, T. Friščić, Lewiński, J. Chem. Commun., 2015, 51, 4032.
  • [24] D.J. Lun, G.I.N. Waterhouse, S.G. Telfer, J. Am. Chem. Soc., 133, 5806.
  • [25] D. Matoga, M. Oszajca, M. Molenda, Chem. Commun., 2015, 51, 7637.
  • [26] Y. Xu, N.A. Vermeulen, Y. Liu, J.T. Hupp, O.K. Farha, Eur. J. Inorg. Chem., 2016, 27, 4345.
  • [27] J. Evans, C.J. Sumby, C.J. Doonan, Chem. Soc. Rev., 2014, 43, 5933.
  • [28] Y. Zhao, J. Liu, M. Horn, N. Motta, M. Hu, Y. Li, Sci. Chin. Mat., 2018, 61 (2), 159.
  • [29] J. Klinowski, F.A. Almeida Paz, P. Silva, J. Rocha, Dalton Trans., 2011, 40, 321.
  • [30] G. Cravotto, E.C. Gaudino, P. Cintas, Chem. Soc. Rev., 2013, 42, 7521.
  • [31] C. Mottillo, T. Friščić, Molecules, 2017, 22, 144.
  • [32] H. Kim, S. Das, M.G. Kim, D.N. Dybtsev, Y. Kim, K. Kim, Inorg. Chem., 2011, 50 (8), 3691.
  • [33] Q. Gao, J. Xu, X.-H. Bu, Coord. Chem. Rev., (2018) (w druku), DOI: 10.1016/j.ccr.2018.03.015.
  • [34] W. Wardencki, J. Curyło, J. Namieśnik, Pol. J. Environ. Stud., 2005, 14 (4), 389.
  • [35] S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. Guy Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Chem. Soc. Rev., 2012, 41, 413.
  • [36] L. Takacs, Chem. Soc. Rev., 2013, 42, 7649.
  • [37] J.G. Hernández, Chem. Eur. J., 2017, 23, 17157.
  • [38] A. Pichon, A. Lazuen-Garay, S.L. James, CrystEngComm, 2006, 8, 211.
  • [39] V. Štrukil, L. Fábián, D.G.Reid, M.J. Duer, G.J. Jackson, M. Eckert-Maksić, T. Friščić, Chem. Commun., 2010, 46, 9191.
  • [40] V. Štrukil, M.D. Igrc, M. Eckert-Maksić, T. Friščić, Chem. Eur. J., 2012, 18, 8464.
  • [41] S.A. Bourne, M. Kilkenny, L.R. Nassimbeni, J. Chem. Soc. Dalton Trans., 2001, 1176.
  • [42] W.J. Blecher, C.A. Longstaff, M.R. Neckenig, J.W. Steed, Chem. Commun., 2002, 1602.
  • [43] A.A.L. Michalchuk, I.A. Tumanov, W.V. Boldyreva, CrystEngCommun, 2013, 15, 6403.
  • [44] K. Užarević, V. Štrukil, C. Mottillo, P.A. Julien, A. Puškarić, T. Friščić, I. Halasz, Cryst. Growth Des., 2016, 16, 2342.
  • [45] T. Friščić, S.L. Childs, S.A.A Rivizi, W. Jones, CrystEngComm, 2009, 11, 418.
  • [46] G.A. Bowmaker, N. Chaichit, C. Pakawatchai, B.W. Skelton, A.H. White, Dalton Trans., 2008, 2926.
  • [47] C.J. Adams, H.M. Colquhoun, P.C. Crawford, M. Lusi, A.G. Orpen, Angew. Chem. Int. Ed., 2007, 46, 1124.
  • [48] D. Braga, M. Cruzi, A. Johansson, M. Polito, K. Rubini, F. Grepioni, Angew. Chem. Int. Ed., 2006, 45, 142.
  • [49] L. Batzdorf, F. Fisher, M. Wilke, K.J. Wenzel, F. Emmerling, Angew. Chem. Int. Ed., 2015, 54 (6), 1799.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6bb754c-af59-4e99-9692-1b74c659c118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.