Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the nature of LF21 aluminum alloy material, it is difficult to process and easily prone to plastic deformation; hence, micro-milling process is prone to produce larger burrs and rougher surface. Currently, there are fewer investigations on LF21 slot micro-milling. So, this article uses a combination of finite element simulation and experimentation to analyze the effects of different cutting parameters on the LF21 slot exit, top burr size, and the surface quality of the bottom of the slot. The results of the investigation show that the top burr and exit burr sizes as well as the surface roughness at the bottom of the groove show a monotonically decreasing trend as the spindle speed increases, especially on the up-milling side where the burr size is significantly smaller than that on the down-milling side. Variation in feed rate plays a pivotal role in burr size and groove bottom roughness. The smallest burr size, along with the best surface quality, is achieved when the feed per tooth is close to the tool edge radius. Furthermore, as the cutting depth increases, both the burr size and surface roughness also increase. This effect becomes particularly pronounced at larger cutting depths, where surface valleys are markedly higher and grooves become significantly deeper. The results of this investigation are instructive for practical micro-milling of aluminum alloy LF21, which is important for improving machining efficiency.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--22
Opis fizyczny
Bibliogr. 37 poz., rys., tab
Twórcy
autor
- School of Mechanical Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, China
autor
- School of Mechanical Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, China
autor
- School of Mechanical Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, China
autor
- Yikun Power Technology (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, China
autor
- School of Mechanical Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, China
autor
- School of Mechanical Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, China
Bibliografia
- 1] Luan, Y., Lu, X., Hou, P, Liang, S.Y., Characteristics and mechanism of top burr formation in micro-milling LF21, J. Manuf. Sci. Eng., 2021, 143(7): 1–16
- [2] Chae, J, Park, S, Freiheit, T., Investigation of micro-cutting operations, Int. J. Mach. Tools Manuf., 2005, 46(3): 313–332
- [3] Malekian, M., Park, S.S., Jun, B.M., Modeling of dynamic micro-milling cutting forces, Int. J. Mach. Tools Manuf., 2009, 49(7–8): 586–598
- [4] Sahoo, P.P., Das, S., Burr minimization in face milling: an edge bevelling approach, Proc. Inst. Mech. Eng. B J. Eng Manuf., 2011, 225(9): 1528–1534
- [5] Lee, K., Dornfeld, A.D., Micro-burr formation and minimization through process control, Precis. Eng., 2004, 29(2): 246–252
- [6] Sravan, A.K., Dey, S., Suresh, P., Burr removal from high-aspect-ratio micro-pillars using ultrasonic-assisted abrasive micro-deburring, J. Micromech. Microeng., 2022, 32(5): 1–8
- [7] Liang, Y.C., Yang, K., Bai, Q.S., Chen, J.X., Wang, B., Modeling and experimental analysis of microburr formation considering tool edge radius and tool-tip breakage in micro-end milling, J. Vac. Sci. Technol. B, 2009, 27(3): 1531–1535
- [8] International Organization for Standardization. ISO 13715:2000, Technical drawings – Edges of undefined shape – Vocabulary and indications, ISO, Geneva (CH), 2000
- [9] Gillespie, A., The formation and properties of machining burrs, J. Manuf. Sci. Eng., 1976, 98: 66–74
- [10] Kiswanto, G., Zariatin, D., Ko, T., The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation, J. Manuf. Process., 2014, 16(4): 435–450
- [11] Muhammad, A., Kumar Gupta, M., Mikołajczyk, T., Pimenov, D.Y., Giasin, K., Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of Inconel 718, Metals, 2021, 11(1): 167
- [12] Shi, W.T., Hou, Y.J., Liu, Y.D., Li, Q.Q., Mechanism and research progress of burr formation in micro-cutting: A review, Chin. Mech. Eng., 2019, 30(23): 2801–2812
- [13] Sun, Q., Cheng, X., Zhao, G., Yang, X., Zheng, G., Experimental study of micromilling burrs of 304 stainless steel, Int. J. Adv. Manuf. Technol., 2019, 105(4): 4651–4662
- [14] Yao, Y., Zhu, H., Huang, C., Wang, J., Zhang, P., Yao, P., Investigation on chip formation and surface integrity in micro end milling of maraging steel, Int. J. Adv. Manuf. Technol., 2019, 102(5–8): 1973–1984
- [15] Zhang, Y., Bai, Q., Sun, Y., Li, D., Burr formation mechanism and machining parameter effect in slot micro-milling titanium alloy Ti6Al4V, Int. J. Adv. Manuf. Technol., 2022, 123(5–6): 2073–2086
- [16] Chen, L., Deng, D., Pi, G., Huang, X., Zhou, W., Burr formation and surface roughness characteristics in micro-milling of microchannels, Int. J. Adv. Manuf. Technol., 2020, 111(5–6): 1–14
- [17] Chen, Y., Wang, T., Zhang, G., Research on parameter optimization of micro-milling Al7075 based on edge-size-effect, Micromachines, 2020, 11(2): 197
- [18] Lu, X., Tian, Y., Luan, Y, Luo, J., Liang, S.Y., Multi-objective optimization of machining parameters in micro-milling LF21 based on the AHP-entropy weight method, Int. J. Adv. Manuf. Technol., 2024, 131(9–10): 4595–4609
- [19] Mokhtar, M.S.M., Yusoff, A.R., Effect of micro-milling parameters on burr formation and surface roughness in aluminum microchannels puncher, J. Tribol., 2024, 41: 129–143
- [20] Chern, G., Study on mechanisms of burr formation and edge breakout near the exit of orthogonal cutting, J. Mater. Process. Technol., 2006, 176: 152–157
- [21] Niknam, A.S., Songmene, V., Analysis of friction and burr formation in slot milling, Procedia CIRP, 2014, 17: 755–759
- [22] Lekkala, R., Bajpai, V., Singh, R.K., Joshi, S.S., Characterization and modeling of burr formation in micro-end milling, Precis. Eng., 2011, 35(4): 625–637
- [23] Chen, Z., Wu, X., Zeng, K., Shen, J., Jiang, F., Liu, Z., et al., Investigation on the exit burr formation in micro milling, Micromachines, 2021, 12(8): 952
- [24] Wang, W., Kweon, S., Yang, S., A study on roughness of the micro-end-milled surface produced by a miniatured machine tool, J. Mater. Process. Technol., 2005, 162: 702–708
- [25] Jin, C.Z., Kang, I.S., Park, J.H., Jang, S.H., Kim, J.S., The characteristics of cutting forces in the micro-milling of AISI D2 steel, J. Mech. Sci. Technol., 2009, 23(10): 2823–2829
- [26] Biermann, D., Kahnis, P., Analysis and simulation of size effects in micromilling, Prod. Eng., 2010, 4(1): 25–34
- [27] Lu, X., Wang, F., Xue, L., Feng, Y., Liang, S.Y., Investigation of material removal rate and surface roughness using multi-objective optimization for micro-milling of Inconel 718, Ind. Lubr. Tribol., 2019, 71(6): 787–794
- [28] Lu, X., Hou, P., Luan, Y., Sun, X., Qiao, J., Zhou, Y., Study on surface roughness of sidewall when micro-milling LF21 waveguide slits, Appl. Sci., 2022, 12(11): 5415
- [29] Zhang, J., Feng, C., Wang, H., Gong, Y., Analytical investigation of the micro groove surface topography by micro-milling, Micromachines, 2019, 10(9): 582
- [30] Wu, X., Du, M., Shen, J., Jiang, F., Li, Y., Liu, L., Experimental research on the top burr formation in micro milling, Int. J. Adv. Manuf. Technol., 2021, 117(11–12): 1–10
- [31] Ahmad, S.M., Razak, S.M., Sulaiman, J., Modelling and simulation of micro-milling cutting forces, J. Mater. Process. Technol., 2010, 210(15): 2154–2162
- [32] Filiz, S., Conley, C.M., Wasserman, M.B., Ozdoganlar, O.B., An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills, Int. J. Mach. Tools Manuf., 2006, 47(7): 1088–1100
- [33] O’Connor, L., Zhou, F.F., Optimal tool design in micro-milling of difficult-to-machine materials, Adv. Manuf., 2022, 11(2): 222–247
- [34] Bai, Q., Wang, P., Cheng, K., Zhao, L., Zhang, Y., Machining dynamics and chatters in micro-milling: A critical review on the state-of-the-art and future perspectives, Chin. J. Aeronaut., 2024, 37(7): 59–80
- [35] Hajiahmadi, S., Burr size investigation in micro milling of stainless steel 316L, Int. J. Light. Mater. Manuf., 2019, 2(4): 296–304
- [36] Zhang, X., Yu, T., Wang, W., Zhao, J., Improved analytical prediction of burr formation in micro end milling, Int. J. Mech. Sci., 2019, 151: 461–470
- [37] Mokhtar, M.S.M., Yusoff, A.R., Lubis, M.S.Y., Effect of machining parameters on micro-burrs formation of aluminium puncher using high-speed machining process, J. Adv. Res. Appl. Mech., 2024, 115(1): 47–60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d89008a6-1adb-48ad-945d-3ac7dc2a55e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.