Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study aims to estimate the frequency-dependent attenuation relations and source parameters of local earthquakes that occurred in the Garhwal Lesser and the Higher Himalaya around Uttarkashi town, India. The local earthquake data of 234 events recorded from a 12-station digital telemetered local seismological network in the region during 2008 to 2017 have been used for this purpose. The first data set of 126 events occurred around Uttarkashi in the Lesser Himalaya, the second data set of 73 events located northwest of Uttarkashi in the Higher Himalaya and the third data set of 35 events located about 35 km east of Uttarkashi in the vicinity of 1991 Uttarkashi earthquake (Ms~6.8) in the Higher Himalaya. The source parameters such as: seismic moment (Mo), source radius (r) and stress drop (∆σ), have been estimated from the displacement spectrum of the SH component of S-wave by applying Brune’s circular source model (Brune in J Geophys Res 75: 4997 5009, 1970). The attenuation characteristics are examined by estimating the quality factor (Qc) from the decay of coda waves of vertical component record using the Single Backscattering model (Aki and Chouet in J Geophys Res 80: 23 3322 3342, 1975). The Qc estimated at different values of frequency (1.5 to 24 Hz) have shown that Qc a function of frequency. Here, we obtain the following frequency-dependent attenuation relationships: Qc=110 f 0.99 (using first and second data sets) and Qc=142 f 0.87 (using third data set). The source parameters of 234 events show that more than 96% of events (227 events) have a low stress drop (less than 10 bars), five events have a stress drop between 10 and 100 bars and two events have exceptionally high stress drop of 271 and 532 bars. This shows that the region produces, by and large, low stress drop events. The variation in stress drops with depth demonstrates no clear increase or decrease in stress drop with focal depth. The Mo-fc scaling relations have been obtained for events with magnitudes two and above, Mo=2.7× 1016 fc −3.98 (for data set 1), Mo=1.4× 1014 fc −2.74 (for data set 2), and Mo=1.1× 1015 fc −3.28 (for data set 3).
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
- IIT Roorkee, Roorkee, Uttarakhand, India
autor
- IIT Roorkee, Roorkee, Uttarakhand, India
Bibliografia
- 1. Abercrombie RE (1995) Earthquake source scaling relationships from− 1 to 5 ML using seismograms recorded at 2 5-km depth. J Geophys Res: Solid Earth 100(B12):24015–24036
- 2. Aki K (1967) Scaling relation of seismic spectrum. J Geophys Res 72:1217–1231
- 3. Aki K (1969) Analysis of the seismic coda of local earthquakes as scattered waves. J Geophys Res 74(2):615–631
- 4. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80(23):3322–3342
- 5. Baruah S, Baruah S, Kalita A, Kayal JR (2011) Ground motion parameters in Shillong and Mikir Plateau supplemented by mapping of amplification factors in Guwahati City, Northeastern India. J Asian Earth Sci 42(6):1424–1436
- 6. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquake. J Geophys Res 75:4997–5009
- 7. Brune JN (1971) Correction to tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 76:5002
- 8. Brune JN, Allen CR (1967) A low-stress-drop, low-magnitude earthquake with surface faulting: the imperial, California, earthquake of March 4, 1966. Bull Seismol Soc Am 57(3):501–514
- 9. Brune JN, Fletcher J, Vernon F, Haar L, Hanks T, Berger J (1986) Low stress-drop earthquakes in the light of new data from the Anza, Calfornia telemetered digital array. Reprinted from Earthquake Source Mechanics, Geophysical Monograph 37 Maurice Ewing 6) Americal Geophysical Union
- 10. Cantore L, Oth A, Parolai S, Bindi D (2011) Attenuation, source parameters and site effects in the Irpinia-Basilicata region (southern Apennines, Italy). J Seismolog 15(2):375–389
- 11. Chopra S, Sharma J, Sutar A, Bansal BK (2013) Estimation of source parameters of Mw 6.9 Sikkim Earthquake and modeling of ground motions to determine causative fault, Pure and Applied Geophysics, 1–18
- 12. Chouet B (1979) Temporal variation in the attenuation of earthquake coda near Stone Canyon California. Geophys Res Lett 6(3):143–146
- 13. De Lorenzo S, Di Grazia G, Giampiccolo E, Gresta S, Langer H, Tusa G, Ursino A (2004) Source and Qp parameters from pulse width inversion of microearthquake data in southeastern Sicily, Italy. J Geophys Res 109:B07308. https://doi.org/10.1029/2003JB002577
- 14. Dinesh K et al (2008) An estimate of a Scaling law of seismic spectrum for earthquake in Himalaya. Indian Miner 61:83–92
- 15. Dysart PS, Snoke JA, Sacks IS (1988) Source parameters and scaling relations for small earthquakes in the Matsushiro region, southwest Honshu, Japan. Bull Seismol Soc Am 78(2):571–589
- 16. Elliott JR, Jolivet R, González PJ, Avouac JP, Hollingsworth J, Searle MP, Stevens VL (2016) Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat Geosci 9(2):174–180
- 17. Fletcher JB, Haar L, Vernon FL, Brune JN, Hanks TC, Berger J (1986) The effects of attenuation on the scaling of source parameters for earthquakes at Anza, California, in Earthquake Source Mechanics. In: Das S, Boatwright J, Scholz CH (eds) American Geophysical Union Monograph, vol 37, pp 331–338
- 18. Frankel A, Kanamori H (1983) Determination of rupture duration and stress drop for earthquakes in Southern California. Bull Seism Soc Am 73(6):1527–1551
- 19. Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO, Xu X, Bock Y, Avouac JP, Adhikari LB, Upreti BN (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake Nepal. Science 349(6252):1091–1095
- 20. Garcia-Garcia JM, Vidal F, Romacho MD, Martin-Marfil JM, Posadas A, Luzon F (1996) Seismic source parameters for microearthquakes of the Granada basin (Southern Spain). Tectonophysics 261:51–66
- 21. García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95(6):2272–2282
- 22. Ghangas V, Kumar A, Gupta SC (2014) Seismicity and source parameters of local earthquakes in Bilaspur region of Himachal Lesser Himalaya. Arab J Geosci. https://doi.org/10.1007/s12517-013-0929-y
- 23. Giuseppina T, Alfonso B, Stefano G (2006) Source parameters of microearthquakes in southeastern Sicily Italy. Bullet Seismol Soc Am 96(3):968–983. https://doi.org/10.1785/0120050071
- 24. Gupta SC, Singh VN, Kumar A (1995) Attenuation of coda waves in the Garhwal Himalaya, India. Phys Earth Planet Inter 87(3–4):247–253
- 25. Gupta SC, Kumar A, Shukla AK, Suresh G (2001) Baidya PR (2006) Coda Q in the Kachchh Basin, western India using aftershocks of the Bhuj earthquake of January 26. Pure Appl Geophys 163(8):1583–1595
- 26. Gupta SC, Teotia SS, Rai SS, Gautam N (1998) Coda Q estimates in the Koyna region, India. In Q of the Earth: Global, Regional, and Laboratory Studies (pp 713–731). Birkhäuser, Basel
- 27. Hanks TC, Boore DM (1984) Moment-Magnitude relations in theory and practice. J Geophys Res 89:6229–6235
- 28. Hanks TC, Kanamoori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350
- 29. Hanks TC, Wyss M (1972) The use of body-wave spectra in the determination of seismic-source parameters. Bull Seism Soc Am 62(2):561–589
- 30. Havskov and Ottomeller (1999) Seisan Earthquake analysis software. Seis Res Lett 70:1999
- 31. Hough SE, Kanamori H (2002) Source properties of earthquakes near the Salton Sea triggered by the 16 October 1999 M 7 1 Hector Mine, California, earthquake. Bullet Seismol Soc Am 92(4):1281–1289
- 32. Irmak TS, Yavuz E, Livaoğlu H, Şentürk E, Sahin EY (2020) Source parameters for small-moderate earthquakes in Marmara Region (Turkey). Geosci J 24(5):541–555
- 33. Jain SK, Gupta SC, Kumar A (2015) Attenuation of coda waves in the Garhwal Lesser Himalaya India. J Seismol 19(2):355–369
- 34. Joshi A (2006) Use of acceleration spectra for determining the frequency dependent attenuation coefficient and source parameters. Bull Seism Soc Am 96:2165–2180
- 35. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seism Soc Am 65:1073–1095
- 36. Kanaujia J, Kumar A, Gupta SC (2015) 1D velocity structure and characteristics of contemporary local seismicity around the Tehri Region, Garhwal Himalaya. Bull Seismol Soc Am 105(4):1852–1869
- 37. Kanaujia J, Kumar A, Gupta SC (2016) Three-dimensional velocity structure around Tehri region of the Garhwal Lesser Himalaya: constraints on geometry of the underthrusting Indian plate. Geophys J Int 205(2):900–914
- 38. Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics 138(1):79–92
- 39. Kumar A (2011) Study of earthquake source parameters using micro-earthquakes and strong motion data, Ph.D Thesis, Indian Institute of Technology, Roorkee
- 40. Kumar A, Pandey AD, Sharma ML, Gupta SC, Jindal AK, Jain SK (1997) Contemporary local seismicity of the Garhwal Himalaya, Proc. Workshop on Earthquake Disaster preparedness, 39–47
- 41. Kumar D, Sriram V, Khattri KN (2006) A study of source parameters, site amplification functions and average Qself from analysis of accelerograms of the 1999 Chamoli earthquake, Himalaya. Pure Appl Geophys 163:1369–1398
- 42. Kumar D, Sriram V, Sarkar I, Teotia SS (2008) An estimation of a scaling Law of seismic spectrum for earthquakes in Himalaya. Indian Miner 61:83–92
- 43. Kumar A, Mittal H, Sachdeva R, Kumar A (2012) Indian national strong motion network. Seism Res Lett 83(1):29–36
- 44. Kumar S, Kumar D, Rastogi BK (2014) Source parameters and scaling relations for small earthquakes in the Kachchh of Gujarat , India
- 45. Kumar et al (2014) High frequency cut –off observed earthquake spectrum and source parameters of local Earthquakes in Himachal Himalaya. IJSR Paper ID: 0201510326 3(7)
- 46. Kumar VA, Gupta SC, Mishra OP, Sandeep AK (2017) Source parameters and high frequency characteristics of local events (0 5≤ML≤2 9) around Bilaspur region of the Himachal Himalaya. Pure Appl Geophys. https://doi.org/10.1007/s00024-017-1493-2
- 47. Kumar S, Vig R, Kapur P (2018) Development of earthquake event detection technique based on STA/LTA algorithm for seismic alert system. J Geol Soc India 92(6):679–686
- 48. Lee WHK, Lahr JC (1975) Hypo-71: A computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes. Open file report, U.S. Geol. Surv. Rev. Ed
- 49. Mahesh P, Rai SS, Sivaram K, Paul A, Gupta S, Sharma R, Gaur VK (2013) One-dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon-Garhwal Himalaya. Bull Seismol Soc Am 103(1):328–339
- 50. Mohamed HH, Deif A, Ibrahim HA, Abuel-enean K, El-Amin EM (2011) Source parameters of the 2007 earthquake sequence Aswan, Egypt. J Afr Earth Sci 62:19–25
- 51. Molnar P, Tapponnier P (1977) Relation of the tectonics of eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics. Geology 5(4):212–216
- 52. Narula PL, Shanker R, Chopra S (2000) Rupture mechanism of Chamoli earthquake on 29 March 1999 and its implication for seismotectonics of Garhwal Himalaya. J Geol Soc India 55:493–503
- 53. Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision geometry of the underthrusting Indian Plate Beneath the Himalaya. J Geophys Res 89:1147–1163
- 54. Paidi V, Kumar A, Gupta SC, Kumar A (2013) Estimation of source parameters of local earthquakes in the environs of Koldam site. Arab J Geosci. https://doi.org/10.1007/s12517-013-1212-y
- 55. Pathak V, Pant CC, Darmwal GS (2013) Geomorphological and seismological investigations in a part of western Kumaun Himalaya, Uttarakhand, India. Geomorphology 193:81–90
- 56. Pathak et al (2016) Source parameter and b-value estimation of local earthquakes in Kumaun Region, Central Himalaya, India, International Journal of Advanced Research IJAR01/1609
- 57. Paul A, Pant CC, Darmwal GS, Pathak V (2007) Seismicity of Uttarakhand as recorded by Kumaun Digital Seismic Network. In: ‘Natural Hazards’ Spl. Vol. IGC (eds. O.P.Varma, A.K. Mahajan, and Vikram Gupta), 57–63
- 58. Paul B, Horton S (2004) Source parameters and tectonic implications of aftershocks of the Mw 76 Bhuj earthquake of 26 January 2001. Bull. Seism. Soc. Am. 94(3):818–827
- 59. Paul A, Kumar N (2010) Estimates of source parameters of M 4.9 Kharsali earthquake using waveform modeling. J. Earth Syst. Sci. 119(5):731–743
- 60. Parshad R, Snehmani RR, Ghangas V, Kumar A, Rana V, Joshi P, Shrivastva PK, Ganju A (2014) Source parameters of local earthquakes in Nubra region, NW Himalaya. Int J Adv Res 2(8):151–158
- 61. Prakash R, Singh RK, Srivastava HN (2016) Nepal earthquake 25 April 2015: source parameters, precursory pattern and hazard assessment. Geomat Nat Haz Risk 7(6):1769–1784
- 62. Raj A, Nath SK, Bansal BK, Thingbaijam KKS, Kumar A, Thiruvengadam N, Yadav A, Arrawatia ML (2009) Rapid estimation of source parameters using Finite fault modeling—case studies from the Sikkim and Garhwal Himalayas. Seism Res Lett 80(1):89–96
- 63. Seeber L, Armbuster JG (1981) Great detachment earthquakes along the Himalayan arc and long-term forecasts. In:Simpson DW, Richards PG(EDS) Earthquake prediction: an international review. Maurice Ewing series 4, Am. Geophys. Union, Washington, pp 259–279.
- 64. Sen, A. (2016) Seismotectonics of main frontal thrust and indo-gangetic plains around Roorkee, Ph.D. Thesis, submitted to IIT Roorkee
- 65. Sharma ML, Wason HR (1994a) Occurrence of low stress drop earthquakes in the Garhwal Himalayan region. Phys Earth Planet Inter 85:265–272
- 66. Sharma ML, Wason HR (1994b) Occurrence of low stress drop earthquakes in the Garhwal Himalaya region. PHY Earth Planet Int 85:264–272
- 67. Singh DD, Rastogi BK, Gupta HK (1979) Spectral analysis of body waves for earthquakes and their source parameters in the Himalaya and nearby regions. Phys Earth Planet Inter 18:143–152
- 68. Sivaram K, Kumar D, Teotia SS, Rai SS, Prakasam KS (2013) Source parameters and scaling relations for small earthquakes in Kumaon Himalaya, India. J Seismol 17(2):579–592
- 69. Sriram V, Khattri KN (1997) A study of source spectrum, site amplification functions, response spectra, Fourier spectra and peak ground accelerations from the strong ground motion data of the 1991 Uttarkahi earthquake. Curr Sci 72:728–740
- 70. Sriram V, Kumar D, Khattri KN (2005) The 1986 Dharamsala earthquake of Himachal Himalaya estimates of source parameters, average intrinsic attenuation and site amplification functions. J Seismol 9:473–485
- 71. Sule B (2010) Spectral source parameters for weak local earthquakes in the Pannonian basin. Central Euro J Geosci 2(4):475–480
- 72. Thakur VC, Kumar S (2002) Seismotectonic of Chamoli earthquake of March 29 1999, and earthquake hazard assessment of Garhwal-Kumaun region, NW Himalaya. Himalayan Geol 23:113–119
- 73. Tomic J, Abercrombie RE, Do Nascimento A (2009) Source parameters andrupture velocity of small M≤2.1 reservoir induced earthquakes. Geophys J Int 179(2):1013–1023
- 74. Tusa G, Gresta S (2008) Frequency-dependent attenuation of P waves and estimation of earthquake source parameters in southeastern Sicily, Italy. Bull Seismol Soc Am 98(6):2772–2794
- 75. Tusa G, Brancato A, Gresta S (2006) Source parameters of microearthquakes in southeastern Sicily, Italy. Bull Seismol Soc Ame 96(3):968–983
- 76. Valdiya KS (1980) The two intracrustal boundary thrusts of the Himalaya. Tectonophysics 66(4):323–348
- 77. Vandana, Kumar A, Gupta SC, Mishra OP, Kumar A, Sandeep (2017) Source parameters and high frequency characteristics of local events (0.5≤ML≤2.9) around Bilaspur region of the Himachal Himalaya. Pure Appl Geophys. https://doi.org/10.1007/s00024-017-1493-2
- 78. Wu YM, Chiao LY (2006) Seismic quiescence before the 1999 Chi-Chi, Taiwan, Mw 7 6 Earthquake. Bull Seism Soc Am 96:321–327
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-662f9563-6784-4791-8941-600b0a34fd78