PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process of separating acetonitrile and water using LTTMs as entrainer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New extractive distillation confi gurations, which use low transition temperature mixtures (LTTMs) as entrainers, have attracted widespread attention among scholars due to their green processes. Furthermore, the design and comparison of different processes can promote the application of new solvents in the future. In this study, two extractive distillation processes, the extractive distillation column (ED) and the extraction dividing wall column (EDW), were selected from previous work. The separation process of acetonitrile (ACN)-water ternary mixtures was studied, and GC3:1(choline chloride/glycolic acid mixture (molar mass 1:3)) and EC2:1((choline chloride/ethylene glycol 1:2 molar mass) were used as entrainers. Minimum consumption energy and the purity of ACN and water were set as the goals, and our sensitivity analysis and economic evaluation results showed that both ED and EDW were effective. As a result, LTTMs can be used in extractive distillation for azeotrope separation.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Shengli College China University of Petroleum, Dongying, 257061, China
autor
  • Wanhua PetroChemical (Yantai) Co., Ltd.
Bibliografia
  • 1. Ian, F., Woods, D., Lewis, M. & Gan, Q. (2012).The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste. Org. Process Res. Dev., 16, 621–624. DOI: 10.1021/op2003503.
  • 2. Li, J., He, C., Peng, C. & Liu, H. (2019). Extractive Distillation with Ionic Liquid Entrainers for the Separation of Acetonitrile and Water. Eng. Chem. Res., 58, DOI: 5602-5612.10.1021/acs.iecr.8b05907.
  • 3. Li, Y. (1998). Development and utilization of acrylonitrile by-product acetonitrile. Petroleum Technol., 27, 367–373. DOI: CNKI:SUN:SYHG.0.1998-05-014.
  • 4. Kim, K., Lee, D., Jung, H., & Sun, Y. (2013). Hium-sulfur batteries: an advanced lithium-sulfur battery. Adv. Funct. Mater., 23, 1076–1080. DOI: 10.1002/adfm.201370039.
  • 5. Western, C. (1974). Acetonitrile-based solvents:their application in thinlayer chromatography of cyclic nucleotides, nucleosides, purine, and pyrimidines. Anal. Biochem. 60, 589–595. DOI: 10.1016/0003-2697(74)90271-1.
  • 6 . Tavazzi, I., Fontannaz, P. & Giuffrida, F., (2018). Quanti-fi cation of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromato-graphy coupled with mass spectrometer detector. J. Chromatogr. B, 1072, 235–243. DOI: 10.1016/j.jchromb.2017.10.067.
  • 7. Muñoz, R., Montón, J.B., Burguet, M.C. & Torre. J. (2006). Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simula-tion and optimization. Sep. Puric. Technol. 50, 175–183. DOI: 10.1016/j.seppur.2005.11.022.
  • 8. Li, W., Xu, B., Lei, Z. & Dai, C. (2018). Separation of benzene and cyclohexane by extractive distillation intensi-fi ed with ionic liquid Chem. Eng. Process., 126, 81–89. DOI: 10.1016/j.cep.2018.02.016.
  • 9 . Lei, Z., Dai, C. & Zhu, J. (2014). Extractive distillation with ionic liquids: a review. ALCHE J. 60, 3312–3329. DOI: 10.1002/aic.14537.
  • 10. Lei, Z., Chen, B. & Ding, Z. (2005). Special Distillation Processes[M].
  • 11. Ma, S., Hou, Y. & Sun, L. (2017). Simulation and experi-ment for ethanol dehydration using low transition temperature mixtures(LTTMs) as entrainers. Chem. Eng. Process. 121, 71–80. DOI: 10.1016/j.cep.2017.08.009.
  • 12. Zhu, Z., Geng, X., He, W., Chen, C., Wang, Y. & Gao. J. (2018).Computer-aided screening of ionic liquids as entrain-ers for separating methyl acetate and methanol via extractive distillation. Ind. Eng. Chem. Res. 57, 9656–9664. DOI: 10.1021/acs.iecr.8b01355.4. Kim, K., Lee, D., Jung, H., & Sun, Y. (2013). Hium-sulfur batteries: an advanced lithium-sulfur battery. Adv. Funct. Mater., 23, 1076–1080. DOI: 10.1002/adfm.201370039
  • 13. Abbott, A.P., Capper, P. & Davies, D. (2003). Novel solvent properties of choline chloride/ urea mixtures”. Chem. Commun. 7, 70–71. DOI: 10.1039/B210714G.
  • 14. Gengan, S. & Moban, S. (2012). Structure, composition and corrosion resistance studies of Co–Cr alloy electrodeposited from deep eutectic solvent (DES). Alloys Compd. 522 ,162–166. DOI: 10.1016/j.jallcom.2012.01.140.
  • 15. Zhao, H., Baker, G. & Holmes, S. (2011). New eutectic inoic liquids for lipase activation and enzymatic preparation of biodiese. Org. Biomol. Chem., 9,1908–1916. DOI: 10.1039/c0ob01011a.
  • 16. Jancheva, M., Grigorakisa, S., Loupassakia, D. & Makrisb, P. (2017). Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J. Appl. Res. Med. Aroma. 6, 31–40. DOI: 10.1016/j.jarmap.2017.01.002.
  • 17. Zhang, L., Shen, D., Zhang, Z. & Wu, X. (2017). Experimental Measurement and Modeling of Vapor−Liquid Equilibrium for the Ternary System Water + Acetonitrile + Ethylene Glycol. J. Chem. Eng. Data, 62, 1725–1731.
  • 18. Bandhana, S., Neetu, S., Tarun, J. & Parminder, S. (2018). Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers. J. Chem. Eng. Data, 63, 2921–2930. DOI: 10.1021/acs.jced.8b00228.
  • 19. Zhang, L., Wang, X. & Zhu, X. (2016). Experimental Measurement and Modeling of Vapor–Liquid Equilibrium for the Ternary Systems Water + Ethanol + Ethylene Glycol, Water + 2-Propanol + Ethylene Glycol, and Water + 1-Propanol + Ethylene Glycol”. J. Chem. & Engin. 61(7), 2596–2604. DOI: 10.1021/acs.jced.6b00264.
  • 20. Asprion, N., Kaibel, G., (2010). Dividing Wall Columns, Fundamentals and recent Advances”. Chem. Eng. Process. Process Intesif. 49,139–146. DOI: 10.1016/j.cep.2010.01.013.
  • 21. Schultz, M., Stewartt, D. & Harris, J. (2002). Reduce costs with dividing-wall columns. Chem. Eng. Process. 98, 64–71.
  • 22. Zhang, Z., Wang, C., Guang, C. & Wang, C. (2019).Separation of propylene oxide-methanol-water mixture via enhanced extractive distillation: Design and control. Chem. Eng. Process.144,107651.
  • 23. Kiss, A.A., David, J. & Suszwalak, D.J. (2012). Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Puric. Technol. 86, 70–78. DOI: 10.1016/j.seppur.2011.10.022.
  • 24. Zhao, Y., Ma, K., Bai, W., Du, D., Zhu, Z. & Wang, Y. (2018). Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy. 148, 296–308. DOI: 10.1016/j.seppur.2019.05.103.
  • 25. Sun, L, Chang, X. & Zhang, Y. (2010). Reducing energy consumption and CO2 emissions in thermally coupled azetropic distillation. Chem. Eng. Technol. 33, 395–404. DOI: 10.1016/j.cherd.2009.08.006.
  • 26. Wu, Y., Hsu, P. & Chien, I. (2013). Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column. Ind. Eng. Chem. Res. 52, 5384–5399. DOI: 10.1021/ie3035898.
  • 27. Yu, .J., Wang, S. & Huang, K. (2015). Improving the perfoamance of extractive dividing-wall columns with inter-mediate heating. Ind. Eng. Chem. Res. 54, 2709–2723. DOI: 10.1021/ie503148t.
  • 28. Douglas, J.M. (1988). Conceptual Design of Chemcal Processes [M]. New York: McGraw-Hill, 345–350.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fba47409-4b7f-4d5c-8ca1-5b2e33243f82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.