PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza numeryczna płyt z centralną szczeliną poddawanych dwuosiowemu rozciąganiu dla materiałów sprężysto-plastycznych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Numerical analysis of the center cracked square plates in biaxial tension for elastic-plastic materials
Języki publikacji
PL
Abstrakty
PL
Zaprezentowano wybrane wyniki analizy numerycznej płyt CCSP(BT) z centralnym pęknięciem poddawanych dwuosiowemu rozciąganiu. Przedstawiono szczegóły modelu numerycznego, wpływ poziomu dwuosiowości naprężeń rozciągających płytę na wartość całki J oraz rozkład naprężeń przed wierzchołkiem pęknięcia. Analizę prowadzono z założeniem małych i dużych odkształceń.
Presented are selected results of numerical analysis for CCSP(BT) plates, containing a central crack subjected to biaxial tension. Details of the numerical analysis were presented and the discussion about the impact of the level of biaxial tension ratio on stress field near crack tip was done. The analysis was performed on the assumption of small and large deformations.
Czasopismo
Rocznik
Strony
1234--1243
Opis fizyczny
Bibliogr., 29 poz., rys., tab., wykr.
Twórcy
autor
  • Katedra Technologii Mechanicznej i Metrologii, Wydział Mechatroniki i Budowy Maszyn Politechniki Świętokrzyskiej
Bibliografia
  • 1. Hutchinson J.W. “Singular behavior at end of tensile crack in hardening material”. Journal of the Mechanics and Physics of Solids. Vol. 16, No. 1 (1968): pp. 13–31.
  • 2. Rice J.R., Rosengren G.F. “Plane strain deformation near crack tip in power-law hardening material”. Journal of the Mechanics and Physics of Solids. Vol. 16, No. 1 (1968): pp. 1–12.
  • 3. McClintock F.A. “Plasticity aspects of fracture”. Liebowitz H. Fracture – an Advanced Treatise. Vol. 3 (1971): pp. 47–225.
  • 4. O’Dowd N.P., Shih C.F. “Family of crack-tip fields characterized by a triaxiality parameter; I. Structure of fields”. Journal of the Mechanics and Physics of Solids. Vol. 39, No. 8 (1991): pp. 989–1015.
  • 5. O’Dowd N.P., Shih C.F. “Family of crack-tip fields characterized by a triaxiality parameter; II. Fracture applications”. Journal of the Mechanics and Physics of Solids. Vol. 40, No. 5 (1992): pp. 939–963.
  • 6. Guo Wanlin. “Elastoplastic three dimensional crack border field; I. Singular structure of the field”. Engineering Fracture Mechanics. Vol. 46, No. 1 (1993): pp. 93–104.
  • 7. Guo Wanlin. “Elastoplastic three dimensional crack border field; II. Asymptotic solution for the field”. Engineering Fracture Mechanics. Vol. 46, No. 1 (1993): pp. 105–113.
  • 8. Guo Wanlin. “Elastoplastic three dimensional crack border field; III. Fracture parameters”. Engineering Fracture Mechanics. Vol. 51, No. 1 (1995): pp. 51–71.
  • 9. Neimitz A., Graba M. “Analytical-numerical hybrid method to determine the stress field in front of the crack in 3D elastic-plastic structural elements”. XVII ECF. Brno – Czech Republic: September 2008. CD, abstract: pp. 85.
  • 10. Graba M. “Numerical analysis of the mechanical fields near the crack tip in the elastic-plastic materials. 3D problems”. Praca doktorska. Kielce: Politechnika Świętokrzyska, 2009, s. 387.
  • 11. Graba M. “Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition”. Archives of Civil and Mechanical Engineering. Elsevier. Vol. 12, Iss. 1 (2012): pp. 29–40.
  • 12. Graba M. “The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension”. Journal of Theoretical and Applied Mechanics. Vol. 50, Iss. 1(2012): pp. 23–46.
  • 13. Graba M. “Catalogue of maximum opening crack stress for CCT specimen assuming large strain condition”. Central European Journal of Engineering. Springer. DOI: 10.2478/s13531-012-0063-8, 2013.
  • 14. SINTAP. “SINTAP: Structural Integrity Assessment Procedures for European Industry. Final Procedure”. Brite-Euram Projest No BE95-1426. Rotherham: British Steel, 1999.
  • 15. FITNET. “FITNET Report, (European Fitness-for-service Network)”. M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers. Contract No. G1RT-CT-2001-05071, 2006.
  • 16. Anderson T.L. “Fracture Mechanics – Fundamentals and Applications”. CRC Press, Corporate Blvd., N.W., Boca Raton, Florida 33431, 2000.
  • 17. Shih C.F. “Small-scale yielding analysis of mixed-mode plane-strain crack problems”. Fracture Analysis. ASTM STP 560, ASTM, 1974, pp. 187–220.
  • 18. Neimitz A., Dzioba I., Graba M., Okrajni J. “The assessment of the strength and safety of the operation high temperature components containing crack”. Kielce: Kielce University of Technology Publishing House 2008.
  • 19. Graba M. „O wyznaczaniu obciążeń granicznych płyt kwadratowych z centralną szczeliną w dwuosiowym rozciąganiu”. Computer Systems Aided Science Industry and Transport, Conference Proceedings, 19-th International Conference TRANSCOMP 2015. Zakopane, 20.11–3.12.2015.
  • 20. Graba M. „Charakterystyka pól naprężeń przed wierzchołkiem pęknięcia dla kwadratowej płyty poddanej dwuosiowemu rozciąganiu”. Computer Systems Aided Science Industry and Transport, Conference Proceedings, 19th International Conference TRANSCOMP 2015. Zakopane, 20.11–3.12.2015.
  • 21. Meek C., Ainsworth R.A. “The effects of load biaxiality and plate length on the limit load of a centre-cracked plate”. Engineering Fracture Mechanics (2015): http://dx.doi.org/10.1016/j.engfracmech.2015.03.034.
  • 22. Huang Y., Zhang L., Guo T.F., HwangK.-C. “Mixed mode near-tip fields for cracks in materials with strain-gradient effects”. Journal of the Mechanics and Physics of Solids. Vol. 45, No. 3 (1997): pp. 439–465.
  • 23. Subramanya H.Y., Viswanath S., Narasimhan R. “A three-dimensional numerical study of mixed mode (I and II) crack tip fields in elastic–plastic solids”. International Journal of Fracture. Vol. 136 (2005): pp. 167–185, DOI 10.1007/s10704-005-5422-5.
  • 24. ADINA 8.8. “ADINA: User Interface Command Reference Manual – Volume I: ADINA Solids & Structures Model Definition”. Report ARD 11-2, ADINA R&D, Inc., 2011.
  • 25. ADINA 8.8. “ADINA: Theory and Modeling Guide – Vol. I: ADINA Solids & Structures”. Report ARD 11-8, ADINA R&D, Inc., 2011.
  • 26. Brocks W., Cornec A., Scheider I. “Computational Aspects of Nonlinear Fracture Mechanics”. Bruchmechanik. GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier (2003): pp. 127–209.
  • 27. Brocks W., Scheider I. “Reliable J-Values. Numerical Aspects of the Path-Dependence of the J-integral in Incremental Plasticity”. Bruchmechanik. GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier (2003): pp. 264–274.
  • 28. Sumpter J.D.G., Forbes A.T. “Constraint based analysis of shallow cracks in mild steel, TWI/EWI/IS”. Dawes M.G.: International Conference on Shallow Crack Fracture Mechanics Test and Application. Cambridge, UK (1992): p. 7.
  • 29. Neimitz A., Graba M., Gałkiewicz J. “An alternative formulation of the Ritchie-Knott-Rice local fracture criterion”. Engineering Fracture Mechanics. Vol. 74 (2007): pp. 1308–1322.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62465121-2b90-44a0-8622-3c81c7a93a1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.