PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combustion performance evaluation of Posidonia oceanica using TGA and bubbling fluidized-bed combustor (batch reactor)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Combustion performance of emerging raw marine biomass called Posidonia oceanica (PO) was investigated using TGA apparatus and a bubbling fluidized-bed batch reactor. The kinetic mechanism and parameters of the combustion process were determined. The Flynn-Wall-Ozawa (FWO) method and data fitting method were analyzed. It was observed that a model based on consecutive processes: devolatilisation and char combustion for two fractions of PO (holocellulose and lignin), is the best model for the analyzed cases. Combustion performance was observed using a BFB reactor and the composition of flue gas after combustion was analyzed, and the conversion of NOx and SO2 was taken into account. The relatively low SO2 emission in the case of PO combustion can be attributed to the impact of the sulphur self-retention (SSR) process. The results were compared to the combustion of wood biomass and Turow lignite. The results showed the good combustion performance of PO.
Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803, Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803, Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803, Zabrze, Poland
autor
  • Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803, Zabrze, Poland
Bibliografia
  • Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and Bioenergy, 34(5), 620-629. http://dx.doi.org/10.1016/j.biombioe. 2010.01.004.
  • Anastasakis, K., & Ross, A. B. (2015). Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel, 139, 546-553. http://dx.doi.org/10.1016/j.fuel.2014.09.006.
  • Balogun, A. O., Lasode, O. A., & McDonald, A. G. (2014). Thermo-analytical and physico-chemical characterization of woody and non-woody biomass from an agro-ecological zone in Nigeria. BioResources, 9(3), 5099-5113.
  • Barneto, A. G., Carmona, J. A., Conesa Ferrer, J. A., & Díaz Blanco, M. J. (2010). Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production. Fuel, 89(2), 462-473. http://dx.doi.org/10.1016/j. fuel.2009.09.024.
  • Boudouresque, C.-F., Bernard, G., Bonhomme, P., Charbonnel, E., Diviacco, G., Meinesz, A., et al. (2012). Protection and conservation of Posidonia oceanica meadows. Tunis: RAMOGE and RAC/SPA.
  • Branca, C., Iannace, A., & Di Blasi, C. (2007). Devolatilization and combustion kinetics of quercus cerris bark. Energy & Fuels, 21(2), 1078-1084. http://dx.doi.org/10.1021/ef060537j.
  • Caballero, J. A., Font, R., Marcilla, A., & Conesa, J. A. (1995). New kinetic model for thermal decomposition of heterogeneous materials. Industrial & Engineering Chemistry Research, 34(3), 806-812. http://dx.doi.org/10.1021/ie00042a012.
  • Chen, Y., Duan, J., & Luo, Y.-h. (2008). Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions. Journal of Analytical and Applied Pyrolysis, 83(2), 165-174. http://dx.doi.org/10.1016/j.jaap.2008.07.008.
  • Chen, H., Liu, N., & Fan, W. (2006). Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels. Journal of Applied Polymer Science, 102(1), 571-576. http://dx.doi.org/10.1002/app.24310.
  • Chiodo, V., Zafarana, G., Maisano, S., Freni, S., & Urbani, F. (2016). Pyrolysis of different biomass: Direct comparison among Posidonia oceanica, Lacustrine alga and white-pine. Fuel, 164, 220-227. http://dx.doi.org/10.1016/j.fuel.2015.09.093.
  • Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011a). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35(2), 799-807. http://dx.doi.org/10.1016/j.biombioe.2010.10.033.
  • Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011b). Comparative management of offshore Posidonia residues: Composting vs. energy recovery. Waste Management, 31(1), 78-84. http://dx.doi.org/10.1016/j. wasman.2010.08.016.
  • Conesa, J. A., & Domene, A. (2011). Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochimica Acta, 523(1-2), 176-181. http://dx.doi.org/10.1016/j.tca.2011.05.021.
  • Conesa, J. A., & Domene, A. (2015). Gasification and pyrolysis of Posidonia oceanica in the presence of dolomite. Journal of Analytical and Applied Pyrolysis, 113, 680-689. http://dx.doi.org/10.1016/j.jaap.2015.04.019.
  • Conesa, J. A., Marcilla, A., & Caballero, J. A. (1997). Evolution of gases from the pyrolysis of modified almond shells: Effect of impregnation with CoCl2. Journal of Analytical and Applied Pyrolysis, 43(1), 59-69. http://dx.doi.org/10.1016/S01652370(97)00053-3.
  • Cordero, T., Rodríguez-Maroto, J. M., Rodríguez-Mirasol, J., & Rodríguez, J. J. (1990). On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta, 164(0), 135-144. http://dx.doi.org/10.1016/0040-6031(90) 80430-7.
  • Dagaut, P., Glarborg, P., & Alzueta, M. U. (2008). The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 34(1), 1-46. http://dx.doi.org/10.1016/j.pecs.2007.02.004.
  • Fang, M. X., Shen, D. K., Li, Y. X., Yu, C. J., Luo, Z. Y., & Cen, K. F. (2006). Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77(1), 22-27. http://dx.doi.org/10.1016/j.jaap.2005.12.010.
  • Gao, N., Li, A., Quan, C., Du, L., & Duan, Y. (2013). TGeFTIR and PyeGC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis, 100, 26-32. http://dx.doi.org/10.1016/j.jaap.2012.11.009.
  • Glarborg, P., Jensen, A. D., & Johnsson, J. E. (2003). Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science, 29(2), 89-113. http://dx.doi.org/10.1016/S0360-1285(02)00031-X.
  • Grubor, B., Manovic, V., & Oka, S. (2003). An experimental and modeling study of the contribution of coal ash to SO2 capture in fluidized bed combustion. Chemical Engineering Journal, 96(1-3), 157-169. http://dx.doi.org/10.1016/j.cej.2003.08.021.
  • Guo, X., Wang, Z., Li, H., Huang, H., Wu, C., Chen, Y., et al. (2001). A study on combustion characteristics and kinetic model of municipal solid wastes. Energy & Fuels, 15(6), 1441-1446. http://dx.doi.org/10.1021/ef010068f.
  • Jauhiainen, J., Conesa, J. A., Font, R., & Martín-Gullón, I. (2004). Kinetics of the pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis, 72(1), 9-15. http://dx.doi.org/10.1016/j.jaap.2004.01.003.
  • Jung, K. A., Lim, S.-R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135(0), 182-190. http://dx.doi.org/10.1016/j.biortech.2012.10.025.
  • Kaloustian, J., Pauli, A. M., & Pastor, J. (2001). Kinetic study of the thermal decompositions of biopolymers extracted from various plants. Journal of Thermal Analysis and Calorimetry, 63(1), 7-20. http://dx.doi.org/10.1023/a:1010199831895.
  • Koornneef, J., Junginger, M., & Faaij, A. (2007). Development of fluidized bed combustiondan overview of trends, performance and cost. Progress in Energy and Combustion Science, 33(1), 19-55. http://dx.doi.org/10.1016/j.pecs.2006.07.001.
  • Kwon, E. E., Jeon, Y. J., & Yi, H. (2012). New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresource Technology, 123(0), 673-677. http://dx.doi.org/10.1016/j.biortech.2012.07.035.
  • Lasek, J. A., Janusz, M., Zuwała, J., Głód, K., & Iluk, A. (2013). Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures. Energy, 62, 105-112. http://dx.doi.org/10.1016/j.energy.2013.04.079.
  • Lasek, J. A., & Kazalski, K. (2014). Sulphur self-retention during cocombustion of fossil fuels with biomass. Energy & Fuels, 28(4), 2780-2785. http://dx.doi.org/ 10.1021/ef402318z.
  • Lasode, O. A., Balogun, A. O., & McDonald, A. G. (2014). Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. Journal of Analytical and Applied Pyrolysis, 109, 47-55. http://dx.doi.org/10.1016/j.jaap.2014.07.014.
  • López-González, D., Fernandez-Lopez, M., Valverde, J. L., & Sanchez-Silva, L. (2014a). Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 114, 227-237. http://dx.doi.org/10.1016/j.apenergy.2013.09.055.
  • López-González, D., Fernandez-Lopez, M., Valverde, J. L., & Sanchez-Silva, L. (2014b). Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 114(0), 227-237. http://dx.doi.org/10.1016/j.apenergy.2013.09.055.
  • Mamleev, V., Bourbigot, S., & Yvon, J. (2007). Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss. Journal of Analytical and Applied Pyrolysis, 80(1), 151-165. http://dx.doi.org/10.1016/j.jaap.2007.01.013.
  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. http://dx.doi.org/10.1137/0111030.
  • Mészáros, E., Jakab, E., Várhegyi, G., & Tóvári, P. (2007). Thermogravimetry/mass spectrometry analysis of energy crops. Journal of Thermal Analysis and Calorimetry, 88(2), 477-482. http://dx.doi.org/10.1007/s10973-006-8102-4.
  • Plis, A., Lasek, J., Skawińska, A., & Kopczyński, M. (2014). Thermo-chemical properties of biomass from Posidonia oceanica. Chemical Papers, 68(7), 879-889. http://dx.doi.org/10.2478/s11696-013-0532-4.
  • Rizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., & Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102(0), 24-31. http://dx.doi.org/10.1016/j.apenergy.2012.08.039.
  • Ross, A. B., Jones, J. M., Kubacki, M. L., & Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99(14), 6494-6504. http://dx.doi.org/10.1016/j.biortech.2007.11.036.
  • Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262-2289. http://dx.doi.org/10.1016/j.rser.2011.02.015.
  • Sanchez-Silva, L., López-González, D., Garcia-Minguillan, A. M., & Valverde, J. L. (2013). Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresource Technology, 130(0), 321-331. http://dx.doi.org/10.1016/j.biortech.2012.12.002.
  • Senneca, O., Chirone, R., & Salatino, P. (2002). A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy & Fuels, 16(3), 661-668. http://dx.doi.org/10.1021/ef0102061.
  • Shen, D. K., Gu, S., Luo, K. H., Bridgwater, A. V., & Fang, M. X. (2009). Kinetic study on thermal decomposition of woods in oxidative environment. Fuel, 88(6), 1024-1030. http://dx.doi.org/10.1016/j.fuel.2008.10.034.
  • Sheng, C., Xu, M., Zhang, J., & Xu, Y. (2000). Comparison of sulphur retention by coal ash in different types of combustors. Fuel Processing Technology, 64(1-3), 1-11. http://dx.doi.org/10.1016/S0378-3820(99)00126-5.
  • Shuping, Z., Yulong, W., Mingde, Y., Chun, L., & Junmao, T. (2010). Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101(1), 359-365. http://dx. doi.org/10.1016/j.biortech.2009.08.020.
  • Slopiecka, K., Bartocci, P., & Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491-497. http://dx.doi.org/10.1016/j.apenergy.2011.12.056.
  • Várhegyi, G., Antal, M. J., Jr., Jakab, E., & Szabo, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42(1), 73-87. http://dx.doi.org/10.1016/S0165-2370(96)00971-0.
  • Várhegyi, G., Czgénéy, Z., Jakab, E., McAdam, K., & Liu, C. (2009). Tobacco pyrolysis. Kinetic evaluation of thermogravimetricemass spectrometric experiments. Journal of Analytical and Applied Pyrolysis, 86(2), 310-322. http://dx.doi.org/10.1016/j.jaap.2009.08.008.
  • Verma, P., Kumar, M., Mishra, G., & Sahoo, D. (2017). Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioresource Technology, 226, 132-144. http://dx.doi.org/10.1016/j.biortech.2016.11.044.
  • Wang, S., Jiang, X. M., Han, X. X., & Liu, J. G. (2009). Combustion characteristics of seaweed biomass. 1. Combustion characteristics of enteromorpha clathrata and sargassum natans. Energy & Fuels, 23(10), 5173-5178. http://dx.doi.org/10.1021/ef900414x.
  • Wang, C., Wang, F., Yang, Q., & Liang, R. (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass and Bioenergy, 33(1), 50-56. http://dx.doi.org/10.1016/j.biombioe.2008.04.013.
  • White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33. http://dx.doi.org/10.1016/ j.jaap.2011.01.004.
  • Yorulmaz, S. Y., & Atimtay, A. T. (2009). Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 90(7-8), 939-946. http://dx.doi.org/10.1016/j.fuproc.2009.02.010.
  • Yu, L. J., Wang, S., Jiang, X. M., Wang, N., & Zhang, C. Q. (2008). Thermal analysis studies on combustion characteristics of seaweed. Journal of Thermal Analysis and Calorimetry, 93(2), 611-617. http://dx.doi.org/10.1007/s10973-007-8274-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba63a4fd-e1bd-471c-8bc7-91a614c41a3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.