Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Medical segmentation metrics are crucial for development of correct segmentation algorithms in medical imaging domain. In case of three dimensional large arrays representing studies like CT, PET/CT or MRI of critical importance is availability of library implementing high performance metrics. MedEval3D is created in order to fulfill this need thanks to implementation of CUDA acceleration. Most of implemented metrics like Dice coefficient, Jacard coefficient etc. are based on confusion matrix, what enable effective reuse of calculations across multiple metrics improving performance in such use case. Additionally algorithms like interclass correlation and Mahalanobis distance are also introduced. In both cases their implementations are significantly faster then their counterparts from other available libraries. Lastly programming interface to all of the metrics was created in Julia programming language.
Słowa kluczowe
Rocznik
Tom
Strony
7--19
Opis fizyczny
Bibliogr. 11 poz., tab., wykr.
Twórcy
autor
- National Information Processing Institute, Medical University of Lublin
autor
- Chair and Department of Nuclear Medicine, Medical University of Lublin
Bibliografia
- [1] F. Renard, S. Guedria, N. De Palma, and N. Vuillerme, “Variability and reproducibility in deep learning for medical image segmentation,” Scientific Reports, vol. 10, no. 1, p. 13724, Aug. 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-69920-0
- [2] A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool,” BMC Medical Imaging, vol. 15, no. 1, p. 29, Aug. 2015. [Online]. Available: https://doi.org/10.1186/s12880-015-0068-x
- [3] J. Mitura and E. B. Chrapko, “3D Medical Segmentation Visualization in Julia with MedEye3d,” Zeszyty Naukowe WWSI, vol. 15, no. 25, pp. 57-67, 2021. [Online] Available: https://doi.org/10.26348/znwwsi.25.57
- [4] A. Jungo, O. Scheidegger, M. Reyes, and F. Balsiger, “pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis,” Computer Methods and Programs in Biomedicine, vol. 198, p. 105796, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169260720316291
- [5] The MONAI Consortium, “Project MONAI,” 2020. [Online]. Available: https://monai.io/
- [6] A. Paszke, S. Gross, F. Massa et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch ́e-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
- [7] K. Y. Yeung and W. L. Ruzzo, “Details of the Adjusted Rand index and Clustering algorithms Supplement to the paper ”An empirical study on Principal Component Analysis for clustering gene expression data” (to appear in Bioinformatics),” 2001. [Online]. Available: https://faculty.washington.edu/kayee/pca/supp.pdf
- [8] F. Zaidi, D. Archambault, and G. Melanc ̧on, “Evaluating the Quality of Clustering Algorithms Using Cluster Path Lengths,” in Advances in Data Mining. Applications and Theoretical Aspects, P. Perner, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 42-56. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-14400-4 4
- [9] B. Rister, D. Yi, K. Shivakumar, T. Nobashi, and D. L. Rubin, “CT-ORG, a new dataset for multiple organ segmentation in computed tomography,” Scientific Data, vol. 7, no. 1, p. 381, Nov. 2020. [Online]. Available: https://doi.org/10.1038/s41597-020-00715-8
- [10] J. Revels, “BenchmarkTools.jl,” 2021. [Online]. Available: https://github.com/JuliaCI/BenchmarkTools.jl
- [11] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM review, vol. 59, no. 1, pp. 65-98, 2017. [Online]. Available: https://doi.org/10.1137/141000671
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca802688-45b8-46a0-a0fc-8a4fb4208ef8