PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on selected location algorithms for the UGV operating in a follow-me scenario based on ultra-wideband positioning system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultra Wideband (UWB) technology is a highly developed wireless radio communication technology used, among others, in location systems. The article focuses on using UWB technology to construct a guide location system for an Unmanned Ground Platform (UGV). In order to carry out the research, the parameters of the measurement noise occurring in real UWB modules were determined. The mentioned noise simulated disturbed distance measurement indications, modelling real measurements. The paper presents the results of simulation research of selected location algorithms for a guide location system based on UWB technology. The work compares the total location errors of the guide of selected algorithms based on geometric methods, trilateration and optimization methods. Simulation studies allow for quick testing of algorithms, taking into account real disturbances and constitute the first stage of work on implementing various algorithms in a real positioning system.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. UGV. Available online: https://www.unmannedsystemstechnology.com/expo/unmanned-ground-vehicle-ugv-manufacturers/ (accessed on 18 April 2024).
  • 2. Michalski, K., Nowakowski, M. The use of unmanned vehicles for military logistic purposes. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Ekonomika i Organizacja Logistyki, 2020, 5(4), 43–57.
  • 3. Husky. Available online: https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/ (accessed on 18 April 2024).
  • 4. PROBOT. Available online: https://robo-team.com/products/probot/ (accessed on 18 April 2024).
  • 5. Bonadies, S., Lefcourt, A., Gadsden, S. A. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 2016, 9866, 142–155, SPIE.
  • 6. BURRO. Available online: https://www.agriautomation.co.nz/burro/ (accessed on 18 April 2024).
  • 7. Hu, X., Assaad, R. H. The use of unmanned ground vehicles (mobile robots) and unmanned aerial vehicles (drones) in the civil infrastructure asset management sector: Applications, robotic platforms, sensors, and algorithms. Expert Systems with Applications, 2023, 232, 120897.
  • 8. Taffetas, S.G. Introduction to Mobile Robot Control, Elsevier, 2014.
  • 9. Bartnicki, A. Wymagania dla stanowiska zdalnego sterowania pojazdem bezzałogowym w zadaniach zmniejszenia zagrożenia wywołanego niekontrolowanym uwalnianiem substancji niebezpiecznych. Logistyka, 2012, 3.
  • 10. Rykała, Ł. Kształtowanie systemu lokalizacji przewodnika w aspekcie wyznaczania trasy przejazdu platformy bezzałogowej. PhD Thesis, Military University of Technology, Warsaw, 2021.
  • 11. Liu, Q., Li, Z., Yuan, S., Zhu, Y., Li, X. Review on vehicle detection technology for unmanned ground vehicles. Sensors, 2021, 21(4), 1354.
  • 12. Liu, O., Yuan, S., Li, Z. A survey on sensor technologies for unmanned ground vehicles. In: 2020 3rd International Conference on Unmanned Systems (ICUS), 2020, 638–645, IEEE.
  • 13. Islam, M.J., Hong, J., Sattar, J. Person-following by autonomous robots: A categorical overview. The International Journal of Robotics Research, 2019, 38(14), 1581–1618.
  • 14. Bakar, M.N.A., Amran, M.F.M. A study on techniques of person following robot. International Journal of Computer Applications, 2015, 125(13).
  • 15. Dabbeeru, M.M., Langsfeld, J.D., Svec, P., Gupta, S.K. Towards Energy Efficient Follow Behaviors for Unmanned Ground Vehicles Over Rugged Terrains. ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2012, 1307–1317.
  • 16. Sadeghi-Tehran, P., Andreu, J., Angelov, P., Zhou, X. Intelligent leader-follower behaviour for unmanned ground-based vehicles. Journal of Automation Mobile Robotics and Intelligent Systems, 2011, 5, 36–46.
  • 17. Rykała, Ł., Typiak, A., Typiak, R. Research on developing an outdoor location system based on the ultra-wideband technology. Sensors, 2020, 20(21), 6171.
  • 18. Demetriou, G.A. A Survey of Sensors for Localization of Unmanned Ground Vehicles (UGVs). In: IC-AI, 2006, 659–668.
  • 19. Shan, X., Cabani, A., Chafouk, H. A Survey of Vehicle Localization: Performance Analysis and Challenges, 2023, IEEE Access.
  • 20. Mannay, K., Benhadjyoussef, N., Machhout, M., Urena, J. Location and positioning systems: Performance and comparison. In: 2016 4th International Conference on Control Engineering Information Technology (CEIT), 2016, 1–6, IEEE.
  • 21. Cheok, K.C., Liu, B., Hudas, G.R., Overholt, J.L., Skalny, M., Smid, G.E. Ultra-Wideband methods for UGV positioning: Experimental and simulation results. In: Proceedings of 2006 US Army Science Conference, 2006.
  • 22. Rykała, Ł., Typiak, A., Typiak, R., Rykała, M. Application of Smoothing Spline in Determining the Unmanned Ground Vehicles Route Based on Ultra-Wideband Distance Measurements. Sensors, 2022, 22(21), 8334.
  • 23. Deremetz, M., Lenain, R., Laneurit, J., Debain, C., Peynot, T. Autonomous Human Tracking using UWB sensors for mobile robots: An Observer-Based approach to follow the human path. In: 2020 IEEE Conference on Control Technology and Applications (CCTA), 2020, 372–379, IEEE.
  • 24. Ultra Wideband technology for indoor positioning and navigation. Available online: https://navigine.com/blog/uwb-technology-features-examples-of-application/ (accessed on 18 April 2024).
  • 25. Mohd Sultan, J., Kamaruzaman, N.N., Chaudhary, A.R., Yusop, A.M., Manap, Z., Mohd Ali, D. Precision Indoor Positioning with Ultra-Wideband (UWB) Technology. Przegląd Elektrotechniczny, 2024, 5.
  • 26. Chen, Y., Wang, J., Yang, J. Exploiting anchor links for NLOS combating in UWB localization. ACM Transactions on Sensor Networks, 2024, 20(3), 1–22.
  • 27. Liu, C. Ultra Wide Band Technology and Indoor Precise Positioning. In: SHS Web of Conferences, 2022, 144, 02002, EDP Sciences.
  • 28. Otim, T., Díez, L.E., Bahillo, A., Lopez-Iturri, P., Falcone, F. Effects of the body wearable sensor position on the UWB localization accuracy. Electronics, 2019, 8(11), 1351.
  • 29. TREK 1000. Available online: https://www.decawave.com/wp-content/uploads/2018/09/trek1000_user_manual.pdf (accessed on 18 April 2024).
  • 30. Two-Way Ranging. Available online: https://www.sewio.net/uwb-technology/two-way-ranging/ (accessed on 18 April 2024).
  • 31. Malon, K., Łopatka, J., Rykała, Ł., Łopatka, M. Accuracy Analysis of UWB Based Tracking System for Unmanned Ground Vehicles. 2018 New Trends in Signal Processing (NTSP), IEEE, 2018, 1–7.
  • 32. Long, L., Wu, J. Research on Indoor Fusion Positioning Based on EKF for UWB_Imu. Academic Journal of Science and Technology, 2023, 8(1), 156–160.
  • 33. Wang, C., Han, H., Wang, J., Yu, H., Yang, D. A robust extended Kalman filter applied to ultrawideband positioning. Mathematical Problems in Engineering, 2020(1), 1809262.
  • 34. Zhou, Y. An Effective Trilateration Algorithm for Mobile Robot Positioning Based on Multiple Reference Points. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, 49040, 1147–1155.
  • 35. Doukhnitch, E., Salamah, M., Ozen, E. An efficient approach for trilateration in 3D positioning. Computer Communications, 2008, 31(17), 4124–4129.
  • 36. Pelka, M. Position Calculation with Least Squares based on Distance Measurements. Lübeck University of Applied Sciences: Technical Report, 2015, 1–3.
  • 37. Zhou, Y. An efficient least-squares trilateration algorithm for mobile robot localization. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, 3474–3479.
  • 38. Guo, H., Li, M., Zhang, X., Gao, X., Liu, Q. UWB indoor positioning optimization algorithm based on genetic annealing and clustering analysis. Frontiers in Neurorobotics, 2022, 16, 715440.
  • 39. Shaker, S., Saade, J.J., Asmar, D. Person-following using fuzzy inference. In: Proceedings of the WSEAS International Conference on Applied Computer and Applied Computational Science, 2008.
  • 40. Brzezinski, M., Kijek, M., Gontarczyk, M., Rykała, Ł., Zelkowski, J. Fuzzy modeling of evaluation logistic systems. In: Proceedings of the 21st International Scientific Conference Transport Means 2017, Juodkrante, Lithuania, September 2017; Kaunas University of Technology: Kaunas, Lithuania; 377–382.
  • 41. Laaraiedh, M., Yu, L., Avrillon, S., Uguen, B. Comparison of hybrid localization schemes using RSSI, TOA, and TDOA. In: 17th European Wireless 2011-Sustainable Wireless Technologies, 2011, 1–5, VDE.
  • 42. Kozicki, B., Skrabacz, A. A comparative analysis of injuries and deaths caused by road traffic accidents in Poland and selected EU countries. Transport Problems: an International Scientific Journal, 2024, 19(1).
  • 43. Kozicki, B., Mitkow, Sz., Jaśkiewicz, P. The Use of Chernoff Faces to Depict Losses in the Number of Passengers Transported by Air in Australia. In: Proceedings of the 25th International Scientific Conference Transport Means 2021, Juodkrante, Lithuania, October 2021; Kaunas University of Technology: Kaunas, Lithuania; 1231–1235.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41a5bbcf-05d1-41f8-b894-b0f2790ad76a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.