Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this article is to present a modern method of convective drying intensification caused by the external action of ultrasound. The purpose of this study is to discover the mechanism of ultrasonic interaction between the solid skeleton and the moisture in pores. This knowledge may help to explain the enhancement of drying mechanism affected by ultrasound, particularly with respect to biological products like fruits and vegetables. The experimental kinetics tests were conducted in a hybrid dryer equipped with a new ultrasonic generator. The drying kinetics curves determined on the basis of drying model developed by the author were validated with those by the ones obtained from experimental tests. The intensification of heat and mass transfer processes due to ultrasound induced heating effect and vibration effect are analysed. The obtained results allow to state that ultrasound makes drying processes more effective and enhance the drying efficiency of biological products without significant elevation of their temperature.
Czasopismo
Rocznik
Tom
Strony
251--–262
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- Poznań University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
- 1. Berry R.S., Kazakov V.A., Sieniutycz S., Szwast Z., Tsirlin A.M., 2000. Thermodynamic optimization of finite–time processes. John Wiley & Sons, LTD, New York, USA.
- 2. Cárcel J.A., García-Pérez J.V., Riera E., Roselló C., Mulet A., 2014. Drying assisted by power ultrasound. In: E. Tsotsas, A.S. Mujumdar (Eds.), Modern Drying Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 237–277.
- 3. Carcel J.A., Garcia-Perez J.V., Riera E., Simal S., Mulet A., 2011. Convective drying intensification: use of airborne ultrasound. Proceedings of the European Drying Conference – EuroDrying’2011. Palma, Balearic Island, Spain, 26–28 October 2011.
- 4. Cheng X., Zhang M. Xu B., Adhikari B., Sun J., 2015. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason. Sonochem., 27, 576–585. DOI: 10.1016/j.ultsonch. 2015.04.015.
- 5. De la Fuente-Blanco S., Riera-Franco de Sarabia E., Acosta-Aparicio V.M., Blanco-Blanco A., Gallego-Juárez J.A., 2006. Food drying process by power ultrasound. Ultrasonics, 44, e523–e527. DOI: 10.1016/j.ultras.2006.05.181.
- 6. Elwell D., Pointon A.J., 1976. Classical Thermodynamics. WNT–Scientific Technological Publishers, Warsaw, Poland (in Polish).
- 7. Fan K., Zhang M., Mujumdar A.S., 2017. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrason. Sonochem., 39, 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.
- 8. Gallego-Juarez J.A., Riera E., de la Fuente Blanco S., Rodriguez-Corral G., Acosta-Aparicio V.M., Blanco A., 2007. Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technol., 25, 1893–1901. DOI: 10.1080/07373930701677371.
- 9. Gamboa-Santos J., Montilla A., Cárcel J.A., Villamiel M., García-Pérez J.V., 2014. Air-borne ultrasound application
- 10. in the convective drying of strawberry. J. Food Eng., 128, 132–139. DOI: 10.1016/j.jfoodeng.2013.12.021.
- 11. Gamboa-Santos J., Montilla A., Soria A.C., Cárcel J.A., García-Pérez J.V., Villamiel M., 2014. Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40–46. DOI: 10.1016/j.foodchem.2014.03.106.
- 12. Garcia-Perez J.V., Carcel J.A., Simal S., Garcia-Alvarado M.A., Mulet A., 2013. Ultrasonic intensification of grape stalk convective drying: kinetic and energy efficiency. Drying Technol., 31, 942–950. DOI: 10.1080/07373937. 2012.716128.
- 13. Gumi´nski K., 1962. Thermodynamics of irreversible processes. PWN – Polish Scientific Publishers, Warsaw, Poland (in Polish).
- 14. Kentish S., Ashokkumar M., 2011. The physical and chemical effects of ultrasound, Chapter 1. In: Feng H., Barbosa-Canovas G., Weiss J. (Eds.), Ultrasound technologies for food and bioprocessing. Food Engineering Series. Food Engineering Series. Springer, New York, NY. DOI: 10.1007/978-1-4419-7472-3_1.
- 15. Kowalski S.J., Musielak G. Banaszak J., 2010a. Heat and mass transfer during microwave-convective drying. AIChE, 56, 24–35. DOI: 10.1002/aic.11948.
- 16. Kowalski S.J., Pawłowski A., 2010b. Modeling of kinetics in stationary and intermittent drying. Drying Technol., 28, 1023–1031. DOI: 10.1080/07373937.2010.497095.
- 17. Kowalski S.J., 2015. Ultrasound in wet materials subjected to drying: A modeling study. Int. J. Heat Mass Transfer, 84, 998–1007. DOI: 10.1016/j.ijheatmasstransfer.2015.01.086.
- 18. Kowalski S.J., Mierzwa D., 2015. US-assisted convective drying of biological materials. Drying Technol., 33, 1601–1613. DOI: 10.1080/07373937.2015.1026985.
- 19. Kowalski S.J., Pawłowski A., 2015. Intensification of apple drying due to ultrasound enhancement. J. Food Eng., 156, 1–9. DOI: 10.1016/j.jfoodeng.2015.01.023.
- 20. Kudra T., Mujumdar A.S., 2002. Advanced Drying Technologies. Marcel Dekker, Inc., New York.
- 21. Kumar C., Karim M.A., Joardder M.U.H., 2014. Intermittent drying of food products: A critical review. J. Food Eng., 121, 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.
- 22. Legay M., Gondrexon N., Le Person S., Boldo P., Bontemps A., 2011. Enhancement of heat transfer by ultrasound: Review and recent advances. Int. J. Chem. Eng., Article ID 670108. DOI: 10.1155/2011/670108.
- 23. Mulet A., Carcel J., Benedito J., Rossello C., Simal S., 2003. Ultrasonic mass transfer enhancement in food processing. In: Welti-Chanes J., Velez-Tuiz J.F., Barbarosa-Canovas G.V. (Eds.), Transport phenomena in food processing. CRC Press LLC, FL, USA. Mulet A., Cárcel J.A., García-Pérez J.V., Riera E., 2011. Ultrasound-assisted hot air drying of foods. In: Feng H., Barbosa-Cánovas G.V., Weiss J. (Eds.), Ultrasound technologies for food and bioprocessing. Food Engineering Series. Springer, New York, NY, 511–534. DOI: 10.1007/978-1-4419-7472-3_19.
- 24. Musielak G., Banaszak J., 2007. Non-linear heat and mass transfer during convective drying of kaolin cylinder under non-steady conditions. Transp. Porous Media, 66, 121–134. DOI 10.1007/s11242-006-9009-z.
- 25. Musielak G., Mierzwa D., Kroehnke J., 2016. Food drying enhancement by ultrasound – A review. Trends. Food. Sci. Technol., 56, 126–141. DOI: 10.1016/j.tifs.2016.08.003.
- 26. Ortuño C., Pérez-Munuera I., Puig A., Riera E., García-Pérez J.V., 2010. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Physics Procedia, 3, 153–159. DOI: 10.1016/j.phpro.2010.01.022.
- 27. Patist A., Darren B., 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Sci. Emerg. Technol., 9, 147–154. DOI: 10.1016/j.ifset.2007.07.004.
- 28. Rosenbrock H.H., 1960. An automatic method for finding the greatest or least value of a function. Computer Journal, 3 (3), 175–184. DOI: 10.1093/comjnl/3.3.175.
- 29. Sabarez H.T., Gallego-Juárez J.A., Riera E., 2012. Ultrasonic-assisted convective drying of apple slices. Drying Technol., 30, 989–997. DOI: 10.1080/07373937.2012.677083.
- 30. Sinha N.K., 2006. Strawberries and raspberries. In: Hui Y.H. (Ed.) Handbook of Fruits and Fruit Processing. Blackwell Publishing, Iowa, USA, pp. 581–595.
- 31. Siucińska K., Konopacka D., 2014. Application of ultrasound to modify and improve dried fruit and vegetable tissue – A review. Drying Technol., 32, 1360–1368. DOI: 10.1080/07373937.2014.916719.
- 32. Sliwiński A., 2001. Ultrasound and Applications. WNT–Scientific Technological Publishers, Warsaw, Poland (in Polish).
- 33. Stasiak M., Musielak G., Kowalski S.J., 2015. Optimization method of evaluation convective heat and mass transfer effective coefficients in drying process. Proc. 5th European Drying Conference (EuroDrying’2015), Budapest, Hungary, 21–23 October 2015, 385–390.
- 34. Strumiłło Cz., 1983. Fundamentals of the theory and technology of drying. 2nd edition, WNT–Scientific Technological Publishers, Warsaw, Poland (in Polish).
- 35. Szadzińska J., Kowalski S.J., Stasiak M., 2016. Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. Int. J. Heat Mass Transfer, 103, 1065–1074. DOI: 10.1016/j.ijheatmasstransfer.2016.08.001.
- 36. Szarawara J., 1985. Chemical Thermodynamics. WNT-Scientific Technological Publishers, Warsaw, Poland (in Polish).
- 37. Wiśniewski S., Wiśniewski T.S., 1997. Heat exchange. 4th edition, WNT–Scientific Technological Publishers, Warsaw, Poland (in Polish).
- 38. Yao Y., Yang K., Zhang W., Liu S., 2014. Parametric study on silica gel regeneration by hot air combined with ultrasonic field based on a semi-theoretic model. Int. J. Therm. Sci., 84, 86–103. DOI: 10.1016/j.ijthermalsci. 2014.05.005.
- 39. Yao Y., Wang W., Yang K., 2015. Mechanism study on the enhancement of silica gel regeneration by power ultrasound with field synergy principle and mass diffusion theory. Int. J. Heat Mass Transfer, 90, 769–780. DOI: 10.1016/j.ijheatmasstransfer.2015.06.063.
- 40. Yao Y., 2016. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrason. Sonochem., 31, 512–531. DOI: 10.1016/j.ultsonch.2016.01.039.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cbeaa2f5-8de8-420d-bfa6-53cb70675754