PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Fatigue Crack Growth in Integrally Stiffened Panels Under the Constant Amplitude and Spectrum Loading

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes methodology of numerical simulation of fatigue crack growth and its application on integrally stiffened panels made of 2024-T351 aluminium alloy using high speed cutting technique. Presented approach for crack growth simulation starts by the calculation of stress intensity factor function from finite element results obtained using MSC. Patran/Nastran. Subsequent crack growth analysis is done in NASGRO and uses description of crack growth rates either by the Forman-Newman-de Koning relationship or by the table lookup form. Three crack growth models were applied for spectrum loading: non-interaction, Willenborg and Strip Yield model. Relatively large experimental program comprising both the constant amplitude and spectrum tests on integral panels and CCT specimens was undertaken at the Institute of Aerospace Engineering laboratory in order to acquire crack growth rate data and enable verification of simulations. First analyses and verification tests of panels were performed under the constant amplitude loading. For predictions of crack growth using the spectrum loading a load sequence representing service loading of the transport airplane wing was prepared. Applied load spectrum was measured on B737 airplane within the joint FAA/NASA collection program. The load sequence is composed of 10 flight types with different severity analogous to the standardized load sequence TWIST. Before application on the stiffened panels a calculation of crack growth under the spectrum loading was performed for simple CCT specimen geometry. The paper finally presents comparison of simulations of fatigue crack propagation in two-stringer stiffened panel under the spectrum loading with verification test carried out in the IAE lab. The work was performed within the scope of the 6th Framework Programme project DaToN - Innovative Fatigue and Damage Tolerance Methods for the Application of New Structural Concepts.
Słowa kluczowe
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 14 poz., fot., rys., wykr., wzory
Twórcy
autor
  • Brno University of Technology, Brno, Czech Republic
Bibliografia
  • [1] Nesterenko, G. I. (2000). In: Proceedings of the 22nd International Council of the Aeronautical Sciences. Comparison of Damage Tolerance of Integrally Stiffened and Riveted Structures, 27 August - 1 September 2000, Harrogate, United Kingdom: ICAS.
  • [2] Krueger, R. (2002). The Virtual Crack Closure Technique: History, Approach and Applications. Hampton: NASA Langley Research Center. (NASA/CR-2002-211628)
  • [3] NASGRO Reference Manual, Version 4.2. San Antonio: NASA Johnson Space Center, Southwest Research Institute.
  • [4] Lanciotti, A., Lazzeri, L., & Polese, C. (2005). Description of the Test Programme, DaToN - WD - WP 3.1 - 1.0 / DIA. Pisa: University of Pisa.
  • [5] Jonge, J. B. de, Hol, P. A., & van Gelder, P. A. (1994). Reanalysis of European Flight Loads Data., DOT/FAA/CT-94/21, Atlantic City: FAA, Technical Center.
  • [6] Rustenberg, J., Skinn, D., & Tipps, D. O. (1998). Statistical Loads Data for Boeing 737-400 Aircraft in Commercial Operations. Washington: FAA, Office of Aviation Research. (DOT/FAA/AR-98/28)
  • [7] Skinn, D., Tipps, D. O., & Rustenberg, J. (1998). Statistical Loads Data for MD-82/83 Aircraft in Commercial Operations. Washington: FAA, Office of Aviation Research. (DOT/FAA/AR-98/65)
  • [8] Tipps, D. O., Rustenberg, J., & Skinn, D. (2000). Statistical Loads Data for Boeing 767-200ER Aircraft in Commercial Operations. Washington: FAA, Office of Aviation Research. (DOT/FAA/AR-00/18)
  • [9] Crabill, N. L. (1989). The NASA Digital VGH Program - Exploration of Methods and Final Results, Volume III – B727 Data 1978-1980: 1765 Hours. Hampton: NASA CR-181909.
  • [10] Crabill, N. L. (1989). The NASA Digital VGH Program – Exploration of Methods and Final Results, Volume IV - B747 Data 1978-1980: 1689 Hours. Hampton: NASA CR-181909.
  • [11] de Jonge, J. B., Schütz, D., Lowak, H., & Schijve, J. (1973). A Standardized Load Sequence for Flight Simulation Tests on Transport Aircraft Wing Structures, Amsterdam, Netherlands: National Aerospace Laboratory. (NLR TR 73029U)
  • [12] Lanciotti, A., & Lazzeri, L. (1992). Effects of Spectrum Variations on Fatigue Crack Growth. International Journal of Fatigue, 14(5), 319-324.
  • [13] Akdenitz, A. (2001). The Impact of Mandated Aging Airplane Programs on Jet Transport Airplane Scheduled Structural Inspection Programs. Aircraft Engineering and Aerospace Technology, 73(1), 4-15.
  • [14] Abelkis, P. R. (1980). Effect of transport aircraft wing loads spectrum variation on crack growth. In D.F. Bryan & J.M. Potter (Eds.). Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation, ASTM STP 714, (pp.143–169). Philadelphia: American Society for Testing and Materials.
Uwagi
EN
The work was performed within the scope of the 6th Framework Programme project DaToN - Innovative Fatigue and Damage Tolerance Methods for the Application of New Structural Concepts.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eaf5f9f-c44b-4e7c-82e7-2942e14c5b03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.