Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of the study was to use the Lyman-Kutcher-Burman model to calculate and compare neurocognitive function (NCF) impairment in the two types of dose distributions in Volumetric Arc Whole-brain radiotherapy (VMAT WBRT). Methods: The total dose prescribed to the Planning Target Volume (PTV) was 25 Gy and 30 Gy in 10 fractions. During the optimization of the Volumetric Arc Therapy Hippocampal-Avoidant WBRT (VMAT HA-WBRT) plan, the left and right hippocampus the D100 < 9 Gy, and the point dose Dmax < 16 Gy were minimalized based on RTOG0933 criteria. As an alternative 59 plans for non-hippocampus sparing, 25 Gy, and 59 plans for 30 Gy VMAT WBRT plans were prepared. To calculate the probability of NCF impairment, the Lyman-Kutcher-Burman (LKB) normal tissue complication probability model was used. Results: The probability of NCF impairment in the HA-WBRT VMAT was equal to 38%, and it was significantly lower compared to 90% in the 25 Gy WBRT VMAT and 97% in the 30 Gy WBRT VMAT (p < 0.05). Conclusions: The probability of NCF impairment was 51-59 percentage points lower in VMAT HA-WBRT compared to VMAT WBRT plans. To achieve a 5% probability of NCF impairment, the D40 value should be reduced to a value of approximately 1 Gy. However, due to the complicated nature and types of NFC impairment, further analysis and strategies are needed to optimize dose distribution.
Słowa kluczowe
Rocznik
Tom
Strony
182--188
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Wojewódzkie Wielospecjalistyczne Centrum Onkologii i Traumatologii im. M. Kopernika w Łodzi
Bibliografia
- 1. Gondi V, Tolakanahalli R, Mehta MP, et al. Hippocampal-Sparing Whole-Brain Radiotherapy: A „How-To” Technique Using Helical Tomotherapy and Linear Accelerator–Based Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology*Biology*Physics. 2010;78(4):1244-1252. https://doi.org/10.1016/j.ijrobp.2010.01.039
- 2. Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive Sparing during the Administration of Whole Brain Radiotherapy and Prophylactic Cranial Irradiation: Current Concepts and Approaches. Journal of Oncology. 2010;2010:1-16. https://doi.org/10.1155/2010/198208
- 3. Pokhrel D, Sood S, McClinton C, et al. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Medical Dosimetry. 2016;41(4):315-322. https://doi.org/10.1016/j.meddos.2016.08.001
- 4. Tallet AV, Azria D, Barlesi F, et al. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7(1). https://doi.org/10.1186/1748-717x-7-77
- 5. Harth S, Abo-Madyan Y, Zheng L, et al. Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiotherapy and Oncology. 2013;109(1):152-158. https://doi.org/10.1016/j.radonc.2013.09.009
- 6. Ahmad S, Kendall E, Algan O. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling. J Med Phys. 2018;43(1):16. https://doi.org/10.4103/jmp.jmp_85_17
- 7. Gondi V, Pugh SL, Tome WA, et al. Preservation of Memory With Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (RTOG 0933): A Phase II Multi-Institutional Trial. JCO. 2014;32(34):3810-3816. https://doi.org/10.1200/jco.2014.57.2909
- 8. Deasy JO. Comments on the use of the Lyman-Kutcher-Burman model to describe tissue response to nonuniform irradiation. International Journal of Radiation Oncology*Biology*Physics. 2000;47(5):1458-1459. https://doi.org/10.1016/s0360-3016(00)00500-9
- 9. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method gerald. International Journal of Radiation Oncology*Biology*Physics. 1989;16(6):1623-1630. https://doi.org/10.1016/0360-3016(89)90972-3
- 10. Källman P, Ågren A, Brahme A. Tumour and Normal Tissue Responses to Fractionated Non-uniform Dose Delivery. International Journal of Radiation Biology. 1992;62(2):249-262. https://doi.org/10.1080/09553009214552071
- 11. Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiotherapy and Oncology. 2013;107(3):267-273. https://doi.org/10.1016/j.radonc.2013.05.007
- 12. Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors. International Journal of Radiation Oncology*Biology*Physics. 2012;83(4):e487-e493. https://doi.org/10.1016/j.ijrobp.2011.10.021
- 13. Hacker VL, Jones C. Detecting feigned impairment with the word list recognition of the Wechsler Memory Scale–3rd edition. Brain Injury. 2009;23(3):243-249. https://doi.org/10.1080/02699050902748315
- 14. Kazda T, Jancalek R, Pospisil P, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9(1). https://doi.org/10.1186/1748-717x-9-139
- 15. Tofilon PJ, Fike JR. The Radioresponse of the Central Nervous System: A Dynamic Process. Radiation Research. 2000;153(4):357-370. https://doi.org/10.1667/0033-7587(2000)153[0357:trotcn]2.0.co;2
- 16. Merchant TE, Kiehna EN, Kun LE, et al. Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. Journal of Neurosurgery: Pediatrics. 2006;104(2):94-102. https://doi.org/10.3171/ped.2006.104.2.5
- 17. Hsiao KY, Yeh SA, Chang CC, Tsai PC, Wu JM, Gau JS. Cognitive Function Before and After Intensity-Modulated Radiation Therapy in Patients With Nasopharyngeal Carcinoma: A Prospective Study. International Journal of Radiation Oncology*Biology*Physics. 2010;77(3):722-726. https://doi.org/10.1016/j.ijrobp.2009.06.080
- 18. Marks LB, Yorke ED, Jackson A, et al. Use of Normal Tissue Complication Probability Models in the Clinic. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S10-S19. https://doi.org/10.1016/j.ijrobp.2009.07.1754
- 19. Lawrence YR, Li XA, el Naqa I, et al. Radiation Dose–Volume Effects in the Brain. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S20-S27. https://doi.org/10.1016/j.ijrobp.2009.02.091
- 20. Marsh JC, Godbole R, Diaz AZ, Gielda BT, Turian JV. Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: A dosimetric feasibility study. Journal of Medical Imaging and Radiation Oncology. 2011;55(4):442-449. https://doi.org/10.1111/j.1754-9485.2011.02282.x
- 21. Mayo C, Yorke E, Merchant TE. Radiation Associated Brainstem Injury. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S36-S41. https://doi.org/10.1016/j.ijrobp.2009.08.078
- 22. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation Dose–Volume Effects of Optic Nerves and Chiasm. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S28-S35. https://doi.org/10.1016/j.ijrobp.2009.07.1753
- 23. Acharya MM, Lan ML, Kan VH, et al. Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radical Biology and Medicine. 2010;49(12):1846-1855. https://doi.org/10.1016/j.freeradbiomed.2010.08.021
- 24. Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313-1317. https://doi.org/10.1038/3305
- 25. Barani IJ, Benedict SH, Lin PS. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies. International Journal of Radiation Oncology*Biology*Physics. 2007;68(2):324-333. https://doi.org/10.1016/j.ijrobp.2007.01.033
- 26. Niyazi M, Andratschke N, Bendszus M, et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiotherapy and Oncology. 2023;184:109663. https://doi.org/10.1016/j.radonc.2023.109663
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d16e7bb5-8a23-4321-a1ad-d0b0a1d6bc94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.