PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Single-frequency ionospheric-delay correction from BeiDou & GPS systems for northern hemisphere

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The range delay caused by the ionosphere layer is the major current source of error for GNSS users with single-frequency receivers. GNSS advice users to correct this type of error using ionospheric models whose coefficients are sent in their navigation messages. GPS-users use the Klobuchar model to correct this type of error. GPS navigation message contains the model’s eight coefficients which vary on the basis of seasonal ionospheric variations and average solar flux. The correction accuracy of Klobuchar model is about 50% (rms) of the ionospheric range delay. Beidou system calculates and broadcast 8 parameters of Klobuchar model based on continuous monitoring stations. BeiDou system updates the ionospheric coefficients every two hours. GPS-Klobuchar model uses completely different coefficients than BeiDou-Klobuchar model. This research demonstrates a comparison study between the Klobuchar model using the GPS broadcast coefficients and the same model using BeiDou-coefficients. The correction accuracy offered by the two models has been judged using the most accurate International GNSS Service-Global Ionospheric Maps (IGS-GIMs) for three different-latitude stations along northern hemisphere, one station in low-latitude region, the second station is in mid-latitude region and the third station is in high-latiude region to reflect models’ behaviour in different geographic regions. The study was applied over three different months of the year 2017 that each of them reflects a different activity state for the ionosphere layer. The study proves that BeiDou model is able to show the ionosphere’s day-to-day fluctuations while GPS model can’t. It can be concluded that GPS model offers better behaviour than BeiDou model in correcting range delay in low-latitude and high-latitude geographic regions under any activity state for the ionosphere. BeiDou model offers better correction accuracy than GPS model in mid-latitude under any activity state for the ionosphere.
Słowa kluczowe
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 14 poz., tab., wykr.
Twórcy
autor
  • College of Engineering, Aswan University, Aswan, Egypt
Bibliografia
  • Dodson, A. H. (1988). The Effects of Atmospheric Refraction on GPS Measurements. Seminar on the Global Positioning System, Nottingham University.
  • Farah, A. (2008). Comparison of GPS/Galileo Single Frequency Ionospheric Models with Vertical Tec Maps. Artificial Satellites, Journal of Planetary Geodesy, Vol. 43, No. 2, 2008.
  • IGS (2018a). The ionospheric coefficients for GPS ionospheric model and BeiDou ionospheric model. (ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/2017/010/17p/) (Accessed 1/9/2018).
  • IGS (2018b). IGS-GIMs (International GNSS Service-Global Ionospheric Maps (IONEX format)) (ftp://cddis.gsfc.nasa.gov/gps/products/ionex/) (Accessed 1/9/2018).
  • Klobuchar, J. A. (1982). Ionospheric Corrections for the Single Frequency User of the Global Positioning System. National Telesystems Conference, NTC’82. Systems for the Eighties. Galveston, Texas, USA (New York: IEEE, 1982).
  • Klobuchar, J. A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems. Vol. AES-23, No. 3, pp. 325-331.
  • Kunches, J. M. and Klobuchar, J. A. (2001). Eye on The Ionosphere: GPS after SA. GPS Solutions 4(3), pp. 52-54.
  • Llewellyn, S. K. and Bent, R. B. (1973). Documentation and Description of the Bent Ionospheric Model. IAFCRL-TR-73-0657, July 1973, AD772733.
  • Newby, S. P., Langely, R. B. and Janes, H. W. (1990). Ionospheric Modelling for Single Frequency Users of the Global Positioning System: A Status Report. In Proceeding of the 2nd International Symposium on Precise Positioning with GPS. Ottawa, Canada.
  • Prasad N, Sarma AD (2004). Ionospheric time delay estimation using IDW grid model for GAGAN. J Indian Geophys Union 8(4):319-327.
  • Sharma S, Galav P (2011). Longitudinal study of the ionospheric response to the geomagnetic storm of 15 May 2005 and manifestation of TADs. Ann Geophys 29:1063-1070.
  • SIDC (2018). Monthly mean total sunspot number [1/1749 - now]. (http://www.sidc.be/silso/datafiles). Accessed (1/9/2018).
  • Wang N., Yuan Y., Li Z. and Huo X. (2016). Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv. Space Res. (2016), http://dx.doi.org/10.1016/ j.asr.2016.01.010.
  • Zhao Wenjun, Qing Gao and Daliang Gong (2014). Analysis on Correction Accuracy of Ionospheric Model for BeiDou System. China Satellite Navigation Conference (CSNC). Proceedings: Volume I, Lecture Notes in Electrical Engineering 303, Springer.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3a5dd99-97c5-427b-bfad-ae1994ea6695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.