Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Composites with the gradient of the Young’s modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites. The results obtained during in vitro tests displayed a good durability of the gradient materials put under long-termstatic load. However, the configuration based on a change in the volume fraction of the fibres seems more advantageous than the one based on a change of the fibres’ orientation. Studied materials were designed to replace the intervertebral disc. The effect of the Young’s modulus of the material layers on the stress distribution between the tissue and the implant was analyzed and the biomimetic character of the gradient composites was stated. Unlike gradient materials, the pure polysulfone and the non-gradient composite resulted in the stress concentration in the region of nucleus pulposus, what is highly disadvantageous and does not occur in the stress distribution of natural intervertebral discs.
Czasopismo
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Krakow, Poland
Bibliografia
- [1] DOBLARE M., GARCIA J.M., GOMEZ M.J., Modelling bone tissue fracture and healing: a review, Eng. Fract. Mech., 2004, 71, 1809–1840.
- [2] SNYDER B.D., HAYES W.C., Multiaxial structure property relations in trabecular bone, [in:] Mow V.C., Ratcliffe A., Woo S.L-Y. (eds.), Biomechanics of Diarthrodial Joints, Springer, New York 1990, 31–59.
- [3] ADAMS M.A., HUTTON W.C., The effect of posture on the fluid content of lumbar intervertebral disks, Spine, 1983, 8, 665–671.
- [4] WILDER D.G., POPE M.H., SEROUSSI R.E., DIMNET J., Creep response of the statically and cyclically loaded lumbar motion segment, Trans. Orthop. Res. Soc., 1987, 1, 367.
- [5] MURUGAN R., RAMAKRISHNA S., Development of nanocomposites for bone grafting, Comp. Sci. Tech., 2005, 65, 2385–2406.
- [6] CHŁOPEK J., MORAWSKA-CHOCHÓŁ A., BAJOR G., ADWENT M., CIEŚLIK-BIELECKA A., CIEŚLIK M., SABAT D., The influence of carbon fibres on the resorption time and mechanical properties of the lactide–glycolide co-polymer, J. Biomater. Sci. Polymer Edn., 2007, 18, 11, 1355–1368.
- [7] PAVANATTI S.L., CARVALHO ZAVAGLIA C.A., BELANGERO W.D., KAWANO Y., Study of biocompatibility of particles and rods of polysulfone, Acta Ortop. Bras., 2001, 9, 3, 11–18.
- [8] PN-EN ISO 14130:1997 Material composites reinforced with fiber. Marking conventional interlaminar stress by short beam.
- [9] ZYSSET P.K., A review of morphology-elasticity relationships in human trabecular bone: theories and experiments, J. Biomech., 2003, 36, 1469–1485.
- [10] YOGANANDAN N., KUMARESAN S., PINTAR A., Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling, Clin. Biomech., 2001, 16, 1–27.
- [11] ADAMS M.A., STEFANAKIS M., DOLAN P., Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implicates for physical therapies for discogenic back pain, Clin. Biomech., 2010, 25, 961–971.
- [12] BĘDZIŃSKI R., Biomechanika Inżynierska (Biomechanics Engineering), ISBN 83-7085-240-8 Wrocław, 1997.
- [13] SKRZYPIEC D.M., POLLINITE P., PRZYBYŁA A., DOLAN P., ADAMS M.A., The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry, Eur. Spine J., 2007, 16, 1701–1709.
- [14] NICHOLSON P.H.F., CHENG X.G., LOWET G., BOONEN S., DAVIE M.W.J., DEQUEKER J., VAN DER PERRE G., Structural and material mechanical properties of human vertebral cancellous bone, Med. Eng. Phys., 1997, 19, 8, 729–737.
- [15] CHOU T.W., Structure and properties of composites, 2005, 13/14, 98–99.
- [16] KŁYSZ S., LISIECKI J., BĄKOWSKI T., Modyfikacja równania do opisu krzywych Wöhlera (Equation modification to description of Wöhler curves) W, Scientific Paper ITWL, 2010, 27, 93–97.
- [17] CHŁOPEK J., Composite materials for medicine, Composites, 2001, 1, 50–54.
- [18] HOJO Y., KOTANI Y., ITO M., ABUMI K., KADOSAWA T., SHIKINAMI Y., MINAMI A., A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage, Biomaterials, 2005, 26, 2643–2651.
- [19] LEE C.K., GOEL V.K., Artificial disc prosthesis: design concepts and criteria, The Spine Journal, 2004, 4, 209S–218S.
- [20] NOAILLY J., AMBROSIO L., TANNER K.E., PLANELL J.A., LACROIX D., In silico evaluation of a new composite disc substitute with a L3–L5 lumbar spine finite element model, Eur. Spine J., 2012, 21, S675–S687.
- [21] HANSSON T.H., KELNER T.S., SPENGLER D.M., Mechanical Behavior of the Human Lumbar Spine. II. Fatigue Strength During Dynamic Compressive Loading, J. Orthopaed. Res., 1987, 5, 479–487.
- [22] CHAFFIN D.B., ANDERSSON G.B.J., Occupational biomechanic, 1991, A Wiley-Interscience Publication.
- [23] CHEUNG J.T.M., ZHANG M., CHOW D.H.K., Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clin. Biomech., 2003, 18, 790–799.
- [24] TYLMAN D., Patomechanika bocznych skrzywień kręgosłupa (Pathomorphology of lateral spine curvate), Warszawa 1972.
- [25] BORKOWSKI P., Biomechanical analysis of artificial lumbar disc, Bio-algorithms and Med-systems, 2005, 1, 1/2, 143–146.
- [26] GZIK M., WOLAŃSKI W., TEJSZERSKA D., Experimental determination of cervical spine mechanical properties, Acta of Bioengineering and Biomechanics, 2008, 10, 4, 49–54.
- [27] YAO J., TURTELTAUB S.R, DUCHEYNE P., A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads, Biomaterials, 2006, 27, 377–387.
- [28] IATRIDIS J.C., GWYNN I., Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus, J. Biomech., 2004, 37, 1165–1175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c7d749-73b7-4d27-b461-1ec750d9599c