PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of the Arctic Soils Using an Artificial Neural Network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Desert-Arctic soils – balasamy (W–C1), are found in the most northerly position in the Arctic. These soils are characterized by a light granulometric composition and are formed in the areas recently released from glaciers, and develop under a crust of blue-green algae. Arctic soils (AO-AY-BC–C) are common on loamy and gravelly–loamy soils (Severnaya Zemlya, Novaya Zemlya, Franz Josef Land, North of the Taimyr Peninsula). They are characterized by wedge-shaped horizons, and are formed in the form of polygons with a diameter of 0.5–1.0 m under moss-shrub vegetation. Carbonate pelozems (WSA–SSA) are found on deluvial deposits of carbonate rocks on loamy-gravelly soils. The vegetation cover is represented by lichens and rare specimens of flowering plants. In the Arctic tundra, on the most drained areas on loamy and gravelly-loamy soils, humified weak-clay (gley) soils (AO-A-CRMg-C(D)) are common. In terms of morphology and chemistry, these soils are similar to Arctic soils, but differ from them in the large development of wedge-shaped horizons. In this work, the composition of Arctic soils was studied using a neural network.
Słowa kluczowe
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of UNESCO on Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Department of UNESCO on Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Department of UNESCO on Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Department of UNESCO on Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Akhmet Yassawi International Kazakh-Turkish University, Тurkestan, Kazakhstan
  • K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan
Bibliografia
  • 1. Bailey V.L., Bond‐Lamberty B., DeAngelis K., Grandy A.S., Hawkes C.V., Heckman K., Lajtha K., Phillips R.P., Sulman B.N., Todd‐Brown K.E.O., Wallenstein M.D. 2018. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Glob Chang Biol, 24(3), 895–905. DOI: 10.1111/gcb.13926
  • 2. Boike J., Georgi C., Kirilin G., Muster S., Abramova K., Fedorova I., Chetverova A., Grigoriev M., Bornemann N., Langer. 2015. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia). Biogeosciences, 12(20), 5941–5965.
  • 3. Brown J., Ferrians O.J.Jr, Heginbottom J.A., Melnikov E.S. 1998. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. Boulder (CO): National Snow and Ice Data Center/World Data Center for Glaciology.
  • 4. Carvalhais N., Forkel M., Khomik M., Bellarby J., Jung M., Migliavacca M., Mu M., Saatchi S., Santoro M., Thurner M., Weber U., Ahrens B., Beer C., Cescatti A., Randerson J.T., Reichstein M. 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514(7521), 213–217. DOI: 10.1038/nature13731
  • 5. Conant R.T., Ryan M.G., Ågren G.I., Birge H.E., Davidson E.A., Eliasson P.E., Evans S.E., Frey S.D., Giardina C.P., Hopkins F.M., Hyvönen R., Kirschbaum M.U.F., Lavallee J.M., Leifeld J., Parton W.J., Megan Steinweg J., Wallenstein M.D., Martin Wetterstedt J.Å., Bradford M.A. 2011. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. DOI:10.1111/j.1365‐2486.2011.02496.x
  • 6. Dungait J.A.J., Hopkins D.W., Gregory A.S., Whitmore A.P. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781– 1796. DOI: 10.1111/j.1365‐2486.2012.02665.x
  • 7. Gilichinsky D., Abakumav E., Abramov A., Fyodorov-Davydov D., Goryachkin S., Lupachev A., Mergelov N., Zazovskaya E. Soils of mid and low antarctic: diversity, geography, temperature regime. Proceedings of the 19th world congress of soil science, 32–35.
  • 8. Hewitt A.J., Booth B.B.B., Jones C.D., Robertson E.S., Wiltshire A.J., Sansom P.G., Stephenson D.B., Yip S. 2016. Sources of uncertainty in future projections of the carbon cycle. Journal of Climate, 29(20), 7203–7213. DOI: 10.1175/jcli‐d‐16‐0161.1
  • 9. Höfle S., Rethemeyer J., Mueller C.W., John S. 2013. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta// Biogeosciences, 10, 3145–3158.
  • 10. Karelin D.V., Goryachkin S.V., Zamolodchikov D.G., Dolgikh A.V., Zazovskaya E.P., Shishkov V.A., Kraev G.N. 2017.Human Footprints on Greenhouse Gas Fluxes in Cryogenic Ecosystems. Doklady Earth Sciences, Maik Nauka/Interperiodica Publishing (Russian Federation), 477(2), 1467–1469.
  • 11. Jones C., Robertson E., Arora V., Friedlingstein P., Shevliakova E., Bopp L., Brovkin V., Hajima T., Kato E., Kawamiya M., Liddicoat S., Lindsay K., Reick C.H., Roelandt C., Segschneider J., Tjiputra J. 2013. Twenty‐first‐century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System Models under four Representative Concentration Pathways. Journal of Climate, 26(13), 4398–4413. DOI: 10.1175/Jcli‐D‐12‐00554.1
  • 12. Karelin D.V., Zamolodchikov D.G., Carbon Exchange in Cryogenic Ecosystems. Moscow. 2008.
  • 13. Polyakov V., Orlova K., Abakumov E. 2017. Evaluation of carbon stocks in the soils of Lena Delta River on the base of application of direct and indirect methods of carbon determination. Biological communications, 62(2), 67–72.
  • 14. Reza S.K., Nayak D.C., Chattopadhyay T., Mukhopadhyay S., Singh & R S.K. 2016. Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach // Archives of agronomy and soil science. 62(7), 972–981.
  • 15. Schuur E.A.G. et al. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle Bioscience, 58, 701–714.
  • 16. Schuur E.A.G. et al. 2013. Expert assessment of vulnerability of permafrost carbon to climate change Clim. Change, 119, 359–374.
  • 17. Schwamborn G. et al. 1999. Sedimentation and environmental history of the Lena Delta. G. Schwamborn, W. Schneider, M. Grigoriev, V. Rachold & M. Antonov. Reports on Polar Research. Bremen: Buchhandlung Karl Kamloth, 315, 94–111.
  • 18. Siewert M.B., Hugelius G., Heim B. 2016. Faucherre of the Lena River Delta. Catena., 147, 725–741.
  • 19. Yershov E. 1998. General Geocryology. Cambridge (United Kingdom): Cambridge University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-562c8630-54b2-4f5c-9f6c-0675fa6f2085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.