PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real Time Thermal Imaging of Solid Oxide Fuel Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a mid infrared thermography was used to study thermal behavior of solid oxide fuel cell (SOFC) with a circular shape and a diameter of 90 mm. The emissivity of the anodic surface of the fuel cell was determined to be from 0.95 to 0.46 in the temperature range 550-1200 K and the profile and temperature distribution of the anodic surface of the unloaded cell was given. The surface temperature of the cell was determined during operation and the polarity changes from open circuit voltage (OCV) to 0.0 V. It was found that the cell self-heating effect decreases with increasing temperature of the cell.
Słowa kluczowe
Twórcy
autor
  • Institute of Technology, Pedagogical University, 2 Podchorążych Str., 30-084 Kraków, Poland
autor
  • Institute of Technology, Pedagogical University, 2 Podchorążych Str., 30-084 Kraków, Poland
  • Institute of Technology, Pedagogical University, 2 Podchorążych Str., 30-084 Kraków, Poland
Bibliografia
  • [1] K. Alanne, A. Saari, V. I. Ugursal, J. Good, The financial viability of an SOFC cogeneration system in single-family dwellings, J. Power Sources. 158, 403-416 (2006) doi: 10.1016/j.jpow-sour.2005.08.054.
  • [2] V. Dusastre, A. Atkinson, S. Barnett, R. J. Gorte, J.T.S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Mater. Sustain. Energy. 213-223 (2012) doi: 10.1142/9789814317665_0030.
  • [3] S. Bebelis, S. Neophytides, AC impedance study of Ni-YSZ cermet anodes in methane-fuelled internal reforming YSZ fuel cells, Solid State Ionics. 153, 447-453 (2002).
  • [4] A. Bieberle, L. P. Meier, L. J. Gauckler, The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes, J. Electrochem. Soc. 646-656 (2001) doi: 10.1149/1.1372219.
  • [5] D. Kim, J. Lee, T. Lim, I. Oh, H. Y. Ha, Operational characteristics of a 50 W DMFC stack, J. Power Sources. 155, 203-212 (2006). doi: 10.1016/j.jpowsour.2005.04.033.
  • [6] M. Adzic, M. V. Heitor, D. Santos, Design of dedicated instrumentation for temperature distribution measurements in solid oxide fuel cells, J. Appl. Electrochem. 27, 1355-1361 (1997).
  • [7] A. Hakenjos, H. Muenter, U. Wittstadt, C. Hebling, A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding, J. Power Sources. 131, 213-216 (2004). doi: 10.1016/j.jpowsour.2003.11.081.
  • [8] M. Wang, H. Guo, C. Ma, Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed, J. Power Sources. 157, 181-187 (2006). doi: 10.1016/j.jpow-sour.2005.08.012.
  • [9] M. B. Pomfret, D. A. Steinhurst, D. A. Kidwell, J. C. Owrutsky, Thermal imaging of solid oxide fuel cell anode processes, J. Power Sources. 195, 257-262 (2010). doi: 10.1016/j.jpow-sour.2009.06.072.
  • [10] M. B. Pomfret, D. A. Steinhurst, J. C. Owrutsky, Ni/YSZ solid oxide fuel cell anodes operating on humidified ethanol fuel feeds: An optical study, J. Power Sources. 233, 331-340 (2013). doi: 10.1016/j.jpowsour.2013.01.048.
  • [11] D.J.L. Brett, P. Aguiar, R. Clague, A. J. Marquis, S. Schöttl, R. Simpson, N. P. Brandon, Application of infrared thermal imaging to the study of pellet solid oxide fuel cells, J. Power Sources. 166, 112-119 (2007). doi: 10.1016/j.jpowsour.2006.12.098.
  • [12] R. Montanini, A. Quattrocchi, S. A. Piccolo, A. Amato, S. Trocino, S. C. Zignani, M. Lo Faro, G. Squadrito, Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition, Appl. Opt. 55, 7142 (2016). doi: 10.1364/ao.55.007142.
  • [13] J. B. Robinson, L. D. Brown, R. Jervis, O. O. Taiwo, T.M.M. Heenan, J. Millichamp, T. J. Mason, T. P. Neville, R. Clague, D. S. Eastwood, C. Reinhard, P. D. Lee, D.J.L. Brett, P. R. Shearing, Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging, J. Power Sources. 288, 473-481 (2015). doi: 10.1016/j.jpowsour.2015.04.104.
  • [14] J. D. Kirtley, S. N. Qadri, D. A. Steinhurst, J. C. Owrutsky, In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes, J. Power Sources. 336, 54-62 (2016). doi: 10.1016/j.jpowsour.2016.10.047.
  • [15] M. Kawalec, R. Kluczowski, M. Krauz, Manufacturing technology of AS-SOFC prepared with different commercially available precursors, E3S Web Conf. 10 (2016) 00033. doi: 10.1051/e3sconf/20161000033.
  • [16] P. E. Liley, Heat Exchanger Design Handbook (HEDH), Heat Exch. Des. Handb. (2019). doi: DOI 10.1615/hedhme.a.000530.
  • [17] Mikron Vertretung, Table of emissivity of various surfaces, (2019). www.transmetra.ch (accessed May 13, 2019).
  • [18] Dr Siebert & Kühn GmbH, Table of total emissivity, (2019). www.sika.net (accessed May 13, 2019).
  • [19] M. B. Pomfret, D. A. Steinhurst, J. C. Owrutsky, Thermal Imaging of Solid Oxide Fuel Cell Anode Degradation with Dry and Wet Ethanol Fuel Flows, ECS Trans. Electrochem. Soc. 35, 1563-1570 (2011). doi: 10.1149/1.3570141.
  • [20] T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, 2011.
  • [21] T. Astarita, G. M. Carlomagno, Infrared Thermography for Thermo-Fluid-Dynamics, Springer-Verlag Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-29508-9_2.
  • [22] J. H. Flynn, L. A. Dunlap, Temperature gradients in horizontal tube furnaces, Thermochim. Acta. 105, 215-218 (1986).
  • [23] F. Tietz, Thermal Expansion of SOFC Materials, Ionics (Kiel). 5, 129-139 (1999).
  • [24] M. Mogensen, Solid Oxide Fuels Cells: Facts anf Figures, Springer, London, 2013. doi: https://doi.org/10.1007/978-1-4471-4456-4.
  • [25] R. Clague, P. Aguiar, D.J.L. Brett, A. J. Marquis, S. Schöttl, R. Simpson, N. P. Brandon, Application of Infrared Thermal Imaging to Map Stress Distributions in a Solid Oxide Fuel Cell, ECS Trans. Electrochem. Soc. 5, 521-532 (2007). doi: 10.1149/1.2729032.
  • [26] D. J. Cumming, R. H. Elder, Thermal imaging of solid oxide cells operating under electrolysis conditions, J. Power Sources. 280, 387-392 (2015). doi: 10.1016/j.jpowsour.2015.01.109.
Uwagi
EN
1. This work was supported by the National Science Centre (NCN, Poland) [grant number: UMO-2013/11/N/ST8/00834].
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-127b8479-ecdc-446f-9104-b71ed4629959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.