Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we successfully synthesized a pyrazole derivative, specifi cally 4-phenylpiperidin-4-ol substituted pyrazole (CHP), through the reaction of Grignard reagents in combination with pyrazole. This newly synthesized molecule was subjected to a comprehensive evaluation for both its photophysical and biological applications. Notably, CHP exhibited promising invitro antifungal and antibacterial activities, primarily attributed to the presence of the 4-phenylpiperidin-4-ol moiety and resulting component contributed to an enhanced absorption rate of lipids, thereby improving the pharmacological activity of CHP. This correlation between structure and function was further supported by the outcomes of structure-activity relationship studies. Additionally, we conducted in silico studies to examine the molecular interactions of the synthesized molecule with key proteins, including DNA Gyrase, Lanosterol 14 α-demethylase, and KEAP1-NRF2. The results unveiled robust binding interactions at specific sites within these proteins, indicating potential therapeutic relevance. Furthermore, the photophysical properties of the synthesized compounds were thoroughly investigated using the ab-initio technique. This involved the determination of ground state optimization and HOMO-LUMO energy levels, all calculated with the DFT-B3LYP-6-31G(d) basis set. The assessment of the theoretically estimated HOMO-LUMO value provided insights into the global chemical reactivity descriptors, revealing that the synthesized molecule boasts a highly electronegative and electrophilic index. Taken together, our findings suggest that pyrazole derivatives with 4-phenylpiperidin-4-ol substitutions exhibit promising applications in both photophysical and biological contexts.
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
autor
- Department of Chemistry, NMKRV College for Women, Bengaluru-560006, India
autor
- Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru-560029, India
autor
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Bibliografia
- 1. Li, X., He, L., Chen, H., Wu, W. & Jiang, H. (2013). Copper-catalyzed aerobic C(sp2)–H functionalization for C–N bond formation: Synthesis of pyrazoles and indazoles. J. Org. Chem. 78, 3636–3646. DOI: 10.1021/jo400162d.
- 2. Eftekhari-Sis, B., Zirak, M. & Akbari, A. (2013). Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 113, 2958–3043. DOI: 10.1021/cr300176g.
- 3. Fang, W.Y., Ravindar, L., Rakesh, K.P., Manukumar, H.M., Shantharam, C.S., Alharbi, N.S. & Qin, H.L. (2019). Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem. 173, 117–153. DOI: 10.1016/j.ejmech.2019.03.063.
- 4. Vitaku, E., Smith, D.T. & Njardarson, J.T. (2014). Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved Pharmaceuticals. J. Med. Chem. 57, 10257–10274. DOI: 10.1021/jm501100b.
- 5. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A. & Gallop, M.A. (1994). Applications of combinatorial technologies to drug discovery, combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem. 37, 1385–1401. DOI: 10.1021/jm00036a001.
- 6. Kaur, R., Chaudhary, S., Kumar, K., Gupta, M.K. & Rawal, R.K. (2017). Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem. 132, 108–134. DOI: 10.1016/j.ejmech.2017.03.025.
- 7. Chaudhari, K., Surana, S., Jain, P. & Patel, H.M. (2016). Mycobacterium tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Eur. J. Med. Chem. 124, 160–185. DOI: 10.1016/j.ejmech.2016.08.034.
- 8. Akhtar, J., Khan, A.A., Ali, Z., Haider, R. & Yar, M.S. (2017). Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 125, 143–189. DOI: 10.1016/j.ejmech.2016.09.023.
- 9. Kaur, R., Dahiya, L. & Kumar, M. (2017). Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur. J. Med. Chem. 141, 473–505. DOI: 10.1016/j.ejmech.2017.09.029.
- 10. Alkathiri, A.A., Atta, A.A., Refat, M.S., Shakya, S., Hassanien, A.M., Algarni, S.A., Ahmed, E.M.A.; Alomariy, S.E., Alsawat, M. & Algethami, N. (2023). Impedance spectroscopy and DFT/TD-DFT studies of diyttrium trioxide for optoelectronic fields. J. Rare Earths, 41(4), 605–612. DOI: 10.1016/j.jre.2022.03.010.
- 11. Devasia, J., Chinnam, S., Khatana, K., Shakya, S., Joy, F., Rudrapal, M. & Nizam, A. (2023). Synthesis, DFT and In Silico Anti-COVID Evaluation of Novel Tetrazole Analogues. Polycycl. Aromat. Compd. 43(3), 1941–1956. DOI: 10.1080/10406638.2022.2036778.
- 12. Hussen, N.H., Hasan, A.H., Jamalis, J., Shakya, S., Chander, S., Kharkwal, H., Murugesan, S., Bastikar, V.A. & Gupta, P. P. (2022). Potential inhibitory activity of phytoconstituents against black fungus: In silico ADMET, molecular docking and MD simulation studies. Computational Toxicology, 24, 100247. DOI: 10.1016/j.comtox.2022.100247.
- 13. Lohit. N., Maridevarmath C.V., Khazi I.A.M. & Mali-math G.H. (2019). Photophysical and computational studies on optoelectronically active thiophene substituted 1,3,4-oxadiazole derivatives, J. Photochem. Photobio. A Chem. 368, 200–209. DOI: 10.1016/j.jphotochem.2018.09.038.
- 14. Walki, S., Malimath, G.H., Mahadevan, K.M., Naik, S., Sutar, S. M., Savanur, H. & Naik, L. (2021). Synthesis, spectroscopic properties, and DFT correlative studies of 3, 3′-carbonyl biscoumarin derivatives. J. Mol. Struct. 1243, 130781. DOI: 10.1016/j.molstruc.2021.130781.
- 15. Prabhala, P., Sutar, S.M., Manjunatha, M.R., Pawashe, G.M., Gupta, V.K., Naik, L. & Kalkhambkar, R.G. (2022). Synthesis, in vitro and theoretical studies on newly synthesized deep blue emitting 4-(p-methylphenylsulfonyl-5-aryl/alkyl) oxazole analogues for biological and optoelectronic applications. J. Mol. Liq. 360, 119520. DOI: 10.1016/j.molliq.2022.119520.
- 16. Naik, L., Thippeswamy, M.S., Praveenkumar, V., Malimath, G.H., Ramesh, D., Sutar, S. & Bubbly, S.G. (2023). Solute-solvent interaction and DFT studies on bromonaph-thofuran 1, 3, 4-oxadiazole fluorophores for optoelectronic applications. J. Mol. Graph. Model. 118, 108367. DOI: 10.1016/j. jmgm.2022.108367.
- 17. Parr, R.G. & Yang, W. (1989). Density Functional Theory of Atoms and Molecules, Oxford University Press, New York.
- 18. Alsanie, W.F., Alamri, A.S., Alyami, H., Alhomrani, M., Shakya, S., Habeeballah, H., Alkhatabi, H.A., Felimban, R.I. Alzahrani, A.S., Alhabeeb, A.A., Raafat, B.M. & Gaber, A. (2022). Increasing the Efficacy of Seproxetine as an Antidepressant Using Charge–Transfer Complexes. Molecules, 27(10), 3290. DOI: 10.3390/molecules27103290.
- 19. Islam, M., Khan, I.M., Shakya, S. & Alam, N. (2023). Design, synthesis, characterizing and DFT calculations of a binary CT complex co-crystal of bioactive moieties in different polar solvents to investigate its pharmacological activity. J. Biomol. Struct. Dyn. 41(20), 10813–10829. DOI: 10.1080/07391102.2022.2158937.
- 20. Domingo, L.R., Gutiérrez, M. & Pérez, P. (2016). Applications of the conceptual density functional theory indices to organic chemistry reactivity, Molecules, 21, 748. DOI: 10.3390/molecules21060748.
- 21. Reddy, G.M. & Camilo A. (2020). Biologically active dihydropyridines: an efficient green synthesis, antimicrobial properties, machine aided results and SARs, Sust. Chem. Pharm. 17, 100303. DOI: 10.1016/j.scp.2020.100303.
- 22. Fahim, A.M., Tolan, H.E. & El-Sayed, W.A. (2022). Synthesis of novel 1, 2, 3-triazole based Acridine and benzothiazole scaffold N-glycosides with anti-proliferative activity, docking studies, and comparative computational studies, J. Mol. Struct., 1251, 131941. DOI: 10.1016/j.molstruc.2021.131941.
- 23. Sargis, D. & Arthur, J.O. (2017). Small-molecule library screening by docking with PyRx, Methods in molecular biology (Clifton, N.J.), 1263, 243–250.
- 24. Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K.K., Lewis, C.J., May, E.W., Saunders, M.R., Singh, O., Spitzfaden, C., Shen, C., Shillings, A., Theobald, A.F., Wohlkonig, A., Pearson, N.D. & Gwynn, M.N. (2010). Type IIA topoisomerase inhibition by a new class of antibacterial agents, Nature, 466, 935–940. DOI: 10.1038/nature09197.
- 25. Sagatova, A.A., Keniya, M.V., Wilson, R.K., Monk, B.C. & Tyndall, J.D. (2015). Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14 alpha-Demethylase, Antimicrob. Agents Chemother. 59, 4982–4989. DOI: 10.1128/aac.00925-15.
- 26. Heightman, T.D., Callahan, J.F., Chiarparin, E., Coyle, J.E., Griffiths-Jones, C., Lakdawala, A.S., McMenamin, R., Mortenson, P.N., Norton, D., Peakman, T.M., Rich, S.J., Richardson, C., Rumsey, W.L., Sanchez, Y., Saxty, G., Willems, H.M.G., Wolfe 3rd, L., Woolford, A.J., Wu, Z., Yan, H. & Kerns, J.K. (2019). Structure-Activity and Structure-Conformation Relationships of Aryl Propionic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1/Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1/NRF2) Protein-Protein Interaction, J. Med. Chem. 62(9), 4683–4702. DOI: 10.1021/acs.jmedchem.9b00279.
- 27. Limeng, S., Yun B., Ying S., Libo W., Liyao A. & Qinying, Y. (2019). Nrf2 mediates the protective effect of edaravone after chlorpyrifos-induced nervous system toxicity, Environ. Toxicol. 34(5), 626–633. DOI: 10.1002/tox.22728.
- 28. Daina, A., Michielin, O. & Zoete, V. (2017). Swiss ADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. DOI: 10.1038/srep42717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c47835ad-57ac-4726-a5c6-b9393c76017f