PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral-homotopy analysis of MHD non-orthogonal stagnation point flow of a nanofluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigate the theoretical study of the magnetohy-drodynamic (MHD) non-orthogonal stagnation point flow of a nanofluid towards a stretching. The partial differential equations that model the problem are reduced to ordinary differential equations which are then solved analytically using the improved Spectral Homotopy Analysis Method (SHAM). Comparisons of our results from SHAM and numerical solutions show that this method is a capable tool for solving this type of linear and nonlinear problems semi-analytically.
Rocznik
Strony
15--28
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6, Canada
  • Department of Mathematics, Islamic Azad University, Bushehr Branch, Bushehr, Iran
autor
  • School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6, Canada
Bibliografia
  • [1] Chaharborj, S.S., Kiai, S.S., Bakar, M.A., Ziaeian, I., & Fudziah, I. (2012). New impulsional potential for a paul ion trap. International Journal of Mass Spectrometry, 309, 63-69.
  • [2] Nayak, I., Nayak, A.K., & Padhy, S. (2016). Implicit fnite difference solution for the magnetohydro-dynamic unsteady free convective flow and heat transfer of a third-grade fluid past a porous vertical plate. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 4-19.
  • [3] John, V. (2016). Finite Element Methods for Incompressible Flow Problems. Berlin: Erscheint demnchst bei Springer.
  • [4] Chen, S., & Wang, Y. (2016). A rational spectral collocation method for third-order singularly perturbed problems. Journal of Computational and Applied Mathematics, 307, 93-105.
  • [5] Moameni, A. (2011). Non-convex self-dual lagrangians: New variational principles of symmetric boundary value problems. Journal of Functional Analysis, 260(9), 2674-2715.
  • [6] Wazwaz, A.M. (2016). Solving systems of fourth-order emden-fowler type equations by the variational iteration method. Chemical Engineering Communications, 203(8), 1081-1092.
  • [7] Hosseini, S., Babolian, E., & Abbasbandy, S. (2016). A new algorithm for solving van der pol equation based on piecewise spectral adomian decomposition method. International Journal of Industrial Mathematics, 8(3), 177-184.
  • [8] Fidanoglu, M., Komurgoz, G., & Ozkol, I. (2016). Heat transfer analysis of fins with spine geometry using differential transform method. International Journal of Mechanical Engineering and Robotics Research, 5(1), 67-71.
  • [9] Shahlaei-Far, S., Nabarrete, A., & Balthazar, J.M. (2016). Homotopy analysis of a forced nonlinear beam model with quadratic and cubic nonlinearities. Journal of Theoretical and Applied Mechanics, 54(4), 1219-1230.
  • [10] Semary, M.S., & Hassan, H.N. (2016). The homotopy analysis method for q-difference equations. Ain Shams Engineering Journal, DOI http://dx.doi.Org/10.1016/j.asej.2016.02.005.
  • [11] Hayat, T., Mumtaz, M., Shafiq, A., & Alsaedi, A. (2017). Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Applied Mathematics and Mechanics, 38(2), 271-288.
  • [12] Zhu, J., Wang, S., Zheng, L., & Zhang, X. (2017). Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Applied Mathematics and Mechanics, 38(1), 125-136.
  • [13] Zhao, Q., Xu, H., Tao, L., Raees, A., & Sun, Q. (2016). Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Applied Mathematics and Mechanics, 37(4), 417-432
  • [14] Motsa, S.S., Marewo, G.T., Sibanda, P., & Shateyi, S. (2011). An improved spectral homotopy analysis method for solving boundary layer problems. Boundary Value Problems, 2011(1), 3-11.
  • [15] Rashidi, M.M., Rostami, B., Freidoonimehr, N., & Abbasbandy, S. (2014). Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Engineering Journal, 5(3), 901-912.
  • [16] Bhatti, M.M., Shahid, A., & Rashidi, M.M. (2016). Numerical simulation of fluid flow over a shrinking porous sheet by Successive linearization method. Alexandria Engineering Journal, 55(1), 51-56.
  • [17] Ahmed, M.A.M., Mohammed, M.E., & Khidir, A.A. (2015). On linearization method to MHD boundary layer convective heat transfer with low pressure gradient. Propulsion and Power Research, 4(2), 105-113.
  • [18] Rashidi, M.M., Abelman, S., & Mehr, N.F. (2013). Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 62, 515-525.
  • [19] Rashidi, M.M., Ali, M., Freidoonimehr, N., & Nazari, F. (2013). Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy, 55, 497-510.
  • [20] Lok, Y.Y., Amin, N., & Pop, I. (2006). Non-orthogonal stagnation point flow towards a stretching sheet. International Journal of Non-Linear Mechanics, 41(4), 622-627.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05985041-51a3-4b18-9845-16a1556ed377
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.