PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital image separation algorithm based on joint pdf of mixed images

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we have presented an algorithm for separating the mixed or fused images. We have considered that the two independent histogram equalized digital images are linearny mixed, and the joint probability density function (PDF) or the scatter plot of the two observed or mixed images is used for separation. The objective and subjective separation results are presented, and observed to be better than the other existing techniques in terms of Peak signal-to-noise ratio (PSNR) and Signal-to-interference ratio (SIR).
Słowa kluczowe
EN
PSNR   SIR   scatter data  
Twórcy
autor
  • Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan 173234, India
autor
  • Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan 173234, India
Bibliografia
  • [1] Abbass, M.,Y., Shehata, S.,A., Haggag, S.,S., Diab, S.,M., Salam, B.,M., El Rabaie, S., Abd El-Samie, F.,E. (2013). Blind separation of noisy images using finie Ridgelet Transform and wavelet de-noising. In Electronics, Communications and Computers (JEC-ECC), 2013 Japan-Egypt International Conference on (pp. 176-181). IEEE
  • [2] Bronstein, A.,M., Bronstein, M.,M., Zibulevsky, M., Zeevi, Y.,Y. (2005). Sparse ICA for blind separation of transmitted and reflected images. International Journal of Imaging Systems and Technology, 15(1), 84-91
  • [3] Carasso, D., Vizel, E., Zeevi, Y.,Y. (2009, July). Blind Source Separation Rusing mixtures scatter plot properties. In Digital Signal Processing, 2009 16th International Conference on (pp. 1-6). IEEE
  • [4] Chen, F., Feng, J., Jain, A.,K., Zhou, J., Zhang, J. (2011). Separating overlappe fingerprints. Information Forensics and Security, IEEE Transactions on, 6(2), 346- 359
  • [5] Choras, R.,S. (2007). Image feature extraction techniques and their applications for CBIR and biometrics systems. International journal of biology and biomedical engineering, 1(1), 6-16
  • [6] Hong, Z.,Q. (1991). Algebraic feature extraction of image for recognition. Pattern recognition, 24(3), 211-219
  • [7] Huadong, D., Yongqi, W., Yaming, C. (2009). Studies on Cloud Detection of Atmospheric Remote Sensing Image Using ICA Algorithm. In Image and Signal Processing, 2009. CISP’09. 2nd International Congress on (pp. 1-4). IEEE
  • [8] Hyvarinen, A. (2001). Blind source separation by nonstationarity of variance: a cumulant-based approach. Neural Networks, IEEE Transactions on, 12(6), 1471-1474
  • [9] Hyvarinen, A., Karhunen, J., Oja, E. (2004). Independent component analysis (Vol. 46). John Wiley & Sons
  • [10] Jadhav, S. D., Bhalchandra, A. S. (2010). Blind source separation based robust digital image watermarking using wavelet domain embedding. In Cybernetics and Intelligent Systems (CIS), 2010 IEEE Conference on (pp. 162-167). IEEE
  • [11] Koh, C. C., Mukherjee, J., Mitra, S. K. (2003). New efficient methods of image compression in digital cameras with color filter array. Consumer Electronics, IEEE Transactions on, 49(4), 1448-1456
  • [12] Kumari, M., Wajid, M. (2013). Source Separation of Independent Components. LRC, JUIT, 2013, SPR 621 KUM, SPM1327
  • [13] Kundur, D., Hatzinakos, D. (1997). A robust digital image watermarking scheme using the wavelet-based fusion. In icip (p. 544). IEEE
  • [14] Kutz, J.,N. (2013). Data-driven modeling & scientific computation: methods for complex systems & big data. Oxford University Press
  • [15] Parra, L., Sajda, P. (2003). Blind source separation via generalized eigenvalue decomposition. The Journal of Machine Learning Research, 4, 1261-1269
  • [16] Singh, D.,K., Tripathi, S., Kalra, P.,K. (2006). Separation of image mixture using complex ICA. In The 9th Asian Symposium on Information Display ASID06, 314-317
  • [17] Sternberg, S.,R. (1983). Biomedical image processing. Computer, 1(16), 22-34
  • [18] Tonazzini, A., Bedini, L., Salerno, E. (2006). A Markov model for blind image separation by a mean-field EM algorithm. Image Processing, IEEE Transactions on, 15(2), 473-482
  • [19] Virmani, J., Kumar, V., Kalra, N., Khandelwa, N. (2013). Pca-SVm based caD System for Focal liver lesions using B-mode ultrasound Images. Defence Science Journal, 63(5), 478-486
  • [20] Ye, N. (Ed.). (2003). The handbook of data mining (Vol. 24). Mahwah, NJ/London: Lawrence Erlbaum Associates, Publishers
  • [21] Zarzoso, V., Comon, P. (2008). Robust independent component analysis for blind source separation and extraction with application in electrocardiography. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE (pp. 3344-3347). IEEE
  • [22] Zhang, L., Dong, W., Zhang, D., Shi, G. (2010). Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43(4), 1531-1549
  • [23] Zhao, Q., Jain, A.,K. (2012). Model based separation of overlapping latent fingerprints. Information Forensics and Security, IEEE Transactions on, 7(3), 904-918
  • [24] Zou, W., Li, Y., Lo, K. C., Chi, Z. (2006). Improvement of image classification with wavelet and independent component analysis (ICA) based on a structured neural network. In Neural Networks, 2006. IJCNN’06. International Joint Conference on (pp. 3949-3954). IEEE
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbdc8a01-97b0-42a5-927b-314d45f953a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.