Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polytechnic as a vocational education institution has to keep updating its curriculum with innovation and the latest technology application in industry and domestic. Teaching learning process in the classroom also has to be based on technology application. The teaching-learning process will be more effective and interesting by involving the students to be more pro- active and creative. To engage the students more, the teacher needs a teaching-learning media, and one of these media is simulation software. The visualization of the simulation attracts students’ interest and enhances students’ creativity. This paper proposes the application of an open source and low-cost software simulation as a teaching-learning media to create an interactive and exciting robotics class. This study will show the design and application of fuzzy logic controller in a mobile firefighter robot, and simulate the design in SCILAB, an open source software, and in MobotSim, a low-cost software. This alternative of open source software can be as good as the high- end ones. This paper shows that the application of fuzzy logic controller can be fun and variant for students to enjoy the class. The contribution of this research is to show and encourage teachers and students to learn robotics and artificial intelligence in an interactive classroom using free software and also encourage them to search more alternative open source software.
Słowa kluczowe
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Politeknik Negeri Sriwijaya, Jalan Srijaya Negara Palembang, Indonesia, www: www.polsri.ac.idg/~tresna_dewi
autor
- Politeknik Negeri Sriwijaya, Jalan Srijaya Negara Palembang, Indonesia, www.polsri.ac.idg/~polarisma.
autor
- idg/~polarisma. Yurni Oktarina – Politeknik Negeri Sriwijaya, Jalan Srijaya Negara Palembang, Indonesia, www.polsri.ac.idg/~yurni_oktarina.
Bibliografia
- [1] W. Jianyu, L. Xi, and X. Chen, “Vocational Ability Oriented Modularized Curriculum for Advanced Vocational School”, Proceeding of 2012 International Conference on Future Computer Supported Education, IERI Procedia, vol. 2, Seoul, 2012, 897-900. DOI: 10.1016/j.ieri.2012.06.188.
- [2] X. Kuangdi, “Engineering Education and Technology in a Fast-Developing China”, Technology in Society, vol. 30 issue. 3-4, 2008, 265-274. https://doi.org/10.1016/j.techsoc.2008.04.024.
- [3] N. Liu, and L. Liang, “The Research and Implementation of the Vocational Curriculum Design and Construction of the Repository”, Proceeding of 2012 International Conference on Future Computer Supported Education, IERI Procedia, vol. 2, Seoul, 2012, 133-136. https://doi.org/10.1016/j.ieri.2012.06.063.
- [4] E. Ospennikova, M. Ershov, and I. Iljin, “Educational Robotics as an Innovative Educational Technology. Worldwide trends in the development of education and academic research”, Procedia-Social and Behavioral Sciences, vol. 214, 2015, 18-26. https://doi.org/10.1016/j.sbspro.2015.11.588.
- [5] R. Y. Kezerashvili, “Teaching RC and RL Circuits Using Computer-Supported Experiment.” Proceeding of 2012 International Conference on Future Computer Supported Education, IERI Procedia, vol. 2, Seoul, 2012, 609-615. DOI: 10.1016/j.ieri.2012.06.142.
- [6] J. Wang, L. Hung, H. Hsieh, J.Tsai, and I. Lin, “Computer Technology Integration and Multimedia Application for Teacher Professional Development: The Use of Instructional Technology in the Classroom Settings”, Proceeding of2012 International Conference on Future Computer Supported Education, IERI Procedia, vol. 2, Seoul, 2012, 616-622. https://doi.org/10.1016/j.ieri.2012.06.143.
- [7] M. Liao, and J. Li, G, “Goal-Oriented Method and Practice in Experimental Teaching”, Proceeding of 2012 International Conference on Future Computer Supported Education, IERI Procedia, vol. 2, Seoul, 2012, 480-484. https://doi.org/10.1016/j.ieri.2012.06.120.
- [8] J. Arlegui, M. Moro, and A. Pina, “Simulation of Robotic Sensors in BYOB”, Proceeding of 3rd International Conference on Robotics in Education,Prague, 2012, 25-32. ISBN 978-80-7378-219-1.
- [9] M. Casini, and A. Garulli, “MARS: a Matlab simulator for mobile robot experiments.”, IFAC-PaperOnline, Proceeding of 11th IFAC Symposium on Advances in Control Education ACE 2016, vol. 49, no. 6, Bratislava, 2016, 069-074. https://doi.org/10.1016/j.ifacol.2016.07.155.
- [10] A. Pandey, and D. R. Parhi, “MATLAB Simulation for Mobile Robot Navigation with Hurdles in Cluttered Environment Using Minimum Rule Based Fuzzy Logic Controller”, Proceeding of 2nd International Conference on Innovations in Automation and Mechatronics Engineering ICIAME 2014, Procedia Technology, vol. 14, Vallabh Vidyanagar, 2014, 28-34. https://doi.org/10.1016/j.protcy.2014.08.005.
- [11] T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Neural Network Simulation for Obstacle Avoidance and Wall Follower Robot as a Helping Tool for Teaching-Learning Process in Classroom”, Proceeding of 2017 1st International Conference on Engineering & Applied Technology (ICEAT), Mataram, 2017, 705-717. http://conference.fgdt-ptm.or.id/index.php/iceat/index.
- [12] T. T. T. Baros, and W. F. Lages, “Development of a Firefighting Robot for Educational Competition”, Proceeding of 3rd International Conference on Robotics in Education, Prague, 2012, 47-54. ISBN 978-80-7378-219-1.
- [13] C. Rodŕiguez, J. L. Gusmán, M. Berenguel, and S. Dormido, “Teaching real-time programming using mobile robots”, IFAC-PapersOnLine, vol. 49, issue 6, 2016, 10-15. https://doi.org/10.1016/j.ifacol.2016.07.145
- [14] P. Petrovic, “Having Fun with Learning Robots”, Proceeding of 3rd International Conference on Robotics in Education, Prague, 2012, 105-112. ISBN 978-80-7378-219-1.
- [15] A. Eguchi, “Educational Robotics for Promoting 21st Century Skills”, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 8, no. 1, 2014, 5-11. DOI: 10.14313/JAMRIS_1-2014/1.
- [16] D. Assaf, J. C. Larsen, and M. Reichardt, “Extending Mechanical Construction Kits to Incorporate Passive and Compliant Elements for Educational Robotics”, 3rd International Conference on Robotics in Education, Prague, 2012, 33-40. ISBN 978-80-7378-219-1.
- [17] F. M. Ĺopez-Rodŕiguez, F. Cuesta, and Andruino-A1, “Low-Cost Educational Mobile Robot Based on Android and Arduino”, J Intell Robot Syst., vol. 81, no. 1, 2016, 63-76. DOI 10.1007/s10846-015-0227-x.
- [18] A. Liu, J. Newsom, C. Schunn, and R. Shoop,“Students Learn Programming Faster Through Robotic Simulation”, techdirection, 2013, pp. 16-19.
- [19] L. A. Zadeh, “Fuzzy Sets. Information Control”, vol. 8, 1965, 338-353.
- [20] P. Shakouri, O. Duran, A. Ordys, and G. Collier, “Teaching Fuzzy Logic Control Based on a Robotic Implementation”, IFAC Proceedings Volumes, vol. 46, issue 17, 2013, pp. 192-197.https://doi.org/10.3182/20130828-3-UK-2039.00047.
- [21] I. Rodríques-Fdez. M. Mucientes, and A. Bugarn, “Learning Fuzzy Controller in Mobile Robotics with Embedded Preprocessing”, Applied Soft Computing, vol. 26, 2015, 123-142. https://doi.org/10.1016/j.asoc.2014.09.021.
- [22] O. Obe, and I. Dumitrache, “Fuzzy Control of Autonomous Mobile Robot”, U.P.B. Sci. Bull, vol. 72, no. 3, Series C, 2010, 173-186.
- [23] A. S. Al Yahmedi, and M. A. Fatmi, “Fuzzy Logic Based Navigation of Mobile Robots”, Recent Advances in Mobile Robot, Intechopen, A. Tapalov (Ed), ISBN: 978-953- 307-909-7, DOI: 10.5772/25621.
- [24] A. Pandey, “Path Planning Navigation of Mobile Robot with Obstacles Avoidance using Fuzzy Logic Controller”, 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, 2014, 36-41. DOI: 10.1109/ISCO.2014.7103914.
- [25] D. N. M. Abadi, and M. H. Khooban, “Design of Optimal Mamdani-type Fuzzy Controller for Nonholonomic Wheeled Mobile Robots”. Journal of King Saud University -Engineering Sciences, vol 27. no. 1, 2015, 92-100.https://doi.org/10.1016/j.jksues.2013.05.003.
- [26] S. T. Mitrovic, and Z. Djurovic, “Fuzzy-Based Controller for Differential Drive Mobile Robot Obstacle Avoidance”, ”7th IFAC Symposium on Intelligent Autonomous Vehicle”, vol. 7, Lecce, 2010, 67-72.https://doi.org/10.3182/20100906-3-IT-2019.00014.
- [27] M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel, “Fuzzy Logic Controller Design for Omnidirectional Mobile Robot Navigation”, Applied Soft Computing, vol. 49, 2016, 901-919. https://doi.org/10.1016/j.asoc.2016.08.057.
- [28] S. Nurmaini, B. Tutuko, K. Dewi, V. Yuliza, and T. Dewi, “Improving Posture Accuracy of Non-Holonomic Mobile Robot System with Variable Universe of Discourse”, Telkomnika, vol. 15, no.3, 2017, 1265-1279. DOI: http://dx.doi.org/10.12928/telkomnika.v15i3.6078.
- [29] R. H. Abiyev, I. Gunse., N. Akkaya, E. Aytac, A. Cagman, and S. Abizada, “Robot Soccer Control”, Proceeding of 12th International Conference on Application of Fuzzy Systems and Soft Computing ICAFS 2016, Procedia Computer Science, vol. 102, 2016, 477-484. https://doi.org/10.1016/j.procs.2016.09.430.
- [30] S. G. Tzafestas, “Introduction to Mobile Robot Control”, First Edition. Elsevier, 2014, 31-98. https://doi.org/10.1016/B978-0-12-417049-0.00002-X. ISBN 9780124171039.
- [31] C. R. C. Torrico, A. B. Leal, and A. T. Y Watanabe, “Modeling and Supervisory Control of Mobile Robots: A Case of a Sumo Robot”, IFAC-PapersOnline, vol. 49, no. 32, 2016, 240-245.https://doi.org/10.1016/j.ifacol.2016.12.221.
- [32] https://www.scilab.org/ accessed on October 25th 2017.
- [33] http://www.mobotsoft.com/ accessed on october 25th 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ce63393-9a3f-4f33-803e-5eb245c1dbc3