PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioactive metabolites produced by Spirulina subsalsa from the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyanobacteria are known producers of compounds with possible medical applications. So far, the biotechnological potential of Spirulina subsalsa has been explored in few studies. They were mainly focused on the use of this cyanobacterium as a bioremediation agent. In our study, seven fractions from Baltic-derived S. subsalsa CCNP1310 were obtained and their cytotoxic effect on the T47D breast cancer cell line as well as inhibitory effects against elastase, trypsin, thrombin, chymotrypsin, and carboxypeptidase A were examined. Four fractions revealed a significant decrease in relative viability of cancer cells. Two inhibited the activity of chymotrypsin and one carboxypeptidase A, but at a moderate level. No effect was observed against other tested proteases. Active fractions were screened with liquid chromatography tandem mass spectrometry (LC-MS/MS) optimized for the detection of peptides, for preliminary characterization of bioactive compounds. We identified three groups of compounds which share the same fragment ions and are possibly linked with effects observed in conducted tests. Our research indicates for the first time that compounds produced by Baltic strain of S. subsalsa not only have high activity against T47D cancer cells but also seem to work selectively as they do not have strong inhibitory effect against the tested enzymes. That indicates the existing potential of the cyanobacterium to be used as a source of important cytotoxic agents.
Czasopismo
Rocznik
Strony
245--255
Opis fizyczny
Bibliogr. 67 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
autor
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Ballot, A., Krienitz, L., Kotut, K., Wiegand, C., Metcalf, J. S., Codd, G. A., Pflugmacher, S., 2004. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita. J. Plankton. Res. 26 (8), 925-935, http://dx.doi.org/10.1093/plankt/fbh084.
  • [2] Burja, A., Banaigs, B., Abou-Mansour, E., Burgess, G. J., Wright, P. C., 2001. Marine cyanobacteria — a prolific source of natural products. Tetrahedron 57, 9347-9377, http://dx.doi.org/10.1016/S0040-4020(01)00931-0.
  • [3] Campanella, L., Cubadda, F., Sammartino, M. P., Saoncella, A., 2001. An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res. 35 (1), 69-76, http://dx.doi.org/10.1016/S0043-1354(00)00223-2.
  • [4] Chakraborty, N., Banerjee, A., Pal, R., 2011. Accumulation of lead by free and immobilized cyanobacteria with special reference to accumulation factor and recovery. Bioresource Technol. 102 (5), 4191-4195, http://dx.doi.org/10.1016/j.biortech.2010.12.028.
  • [5] Chang, T. T., More, S. V., Lu, I.-H., Hsu, J.-C., Chen, T.-J., Jen, Y. C., Lu, C.-K., Li, W.-S., 2011. Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur. J. Med. Chem. 46 (9), 3810-3819, http://dx.doi.org/10.1016/j.ejmech.2011.05.049.
  • [6] Ciferri, O., Tiboni, O., 1985. The biochemistry and industrial potential of Spirulina. Annu. Rev. Microbiol. 39, 503-526, http://dx.doi.org/10.1146/annurev.mi.39.100185.002443.
  • [7] Costa, M., Costa-Rodriguez, J., Fernandes, M. H., Barros, P., Vasconcelos, V., Martins, R., 2012. Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar. Drugs 10, 2181-2207, http://dx.doi.org/10.3390/md10102181.
  • [8] Ersmark, K., Del Valle, J. R., Hanessian, S., 2008. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 47, 1202-1223, http://dx.doi.org/10.1002/anie.200605219.
  • [9] Felczykowska, A., Pawlik, A., Mazur-Marzec, H., Toruńska-Sitarz, A., Narajczyk, M., Richert, M., Węgrzyn, G., Herman-Antosiewicz, A., 2015. Selective inhibition of cancer cells' proliferation by compounds included in extracts from Baltic Sea cyanobacteria. Toxicon 108, 1-10, http://dx.doi.org/10.1016/j.toxicon.2015.09.030.
  • [10] Fewer, D. P., Jokela, L., Rouhiainen, J., Wahlsten, M., Koskenniemi, K., Stal, L. J., Sivonen, K., 2009. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73 (5), 924-937, http://dx.doi.org/10.1111/j.1365-2958.2009.06816.x.
  • [11] Fewer, D. P., Jouni, J., Paukku, E., Osterholm, J., Wahlsten, M., Permi, P., Aitio, O., Rouhiainen, L., Gomez-Saez, G. V., Sivonen, K., 2013. New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLOS ONE 8 (9), 1-10, http://dx.doi.org/10.1371/journal.pone.0073618.
  • [12] Gademann, K., 2011. Out in the green: biologically active metabolites produced by cyanobacteria. Chimia 65 (6), 416-419, http://dx.doi.org/10.2533/chimia.2011.416.
  • [13] Gerwick, W. H., Moore, B. S., 2012. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19 (1), 85-98, http://dx.doi.org/10.1016/j.chembiol.2011.12.014.
  • [14] Gomont, M., 1892. Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. — Lyngbyées. Annales Des Sciences Naturelles, Botanique 7 (16), 91-264.
  • [15] Gunasekera, S. P., Ross, C., Paul, V. J., Matthew, S., Luesch, H., 2008. Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J. Nat. Prod. 71, 887-890, http://dx.doi.org/10.1021/np0706769.
  • [16] Han, B., Gross, H., Goeger, D. E., Mooberry, S. L., Gerwick, W. H., 2006. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 69 (4), 572-575, http://dx.doi.org/10.1021/np0503911.
  • [17] Havens, K. E., 2008. Cyanobacteria blooms: effects on aquatic ecosystems. Adv. Exp. Med. Biol. 619, 733-747, http://dx.doi.org/10.1007/978-0-387-75865-7_33.
  • [18] Herfindal, L., Oftedal, L., Selheim, F., Wahlsten, M., Sivonen, K., Døskeland, S. O., 2005. A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes. Toxicon 46 (3), 252-260, http://dx.doi.org/10.1016/j.toxicon.2005.04.005.
  • [19] Hosseini, S. M., Khosravi-Darani, K., Mozafari, M. R., 2013. Nutritional and medical applications of Spirulina microalgae. Mini-Rev. Med. Chem. 13 (8), 1231-1237, http://dx.doi.org/10.2174/1389557511313080009.
  • [20] Huang, G.-L., Zhihui, S., 2002. Immobilization of Spirulina subsalsa for removal of triphenyltin from water. Artif. Cell. Blood Sub. 30 (4), 293-305, http://dx.doi.org/10.1081/BIO-120006120.
  • [21] Humisto, A., Herfindal, L., Jokela, J., Karkman, A., Bjørnstad, R., Choudhury, R. R., Sivonen, K., 2016. Cyanobacteria as a source for novel anti-leukemic compounds. Curr. Pharm. Biotechnol. 17 (1), 78-91, http://dx.doi.org/10.2174/1389201016666150826121124.
  • [22] Jiang, L., Pei, H., Hu, W., Ji, Y., Han, L., Ma, G., 2015. The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Bioresource Technol. 180, 304-310, http://dx.doi.org/10.1016/j.biortech.2015.01.019.
  • [23] Karjalainen, M., Engström-Ost, J., Korpinen, S., Peltonen, H., Pääkkönen, J.-P., Rönkkönen, S., Suikkanen, S., Viitasalo, M., 2007. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. Ambio 36 (2-3), 195-202, http://dx.doi.org/10.1579/0044-7447(2007)36[195:ECOCIT]2.0.CO;2.
  • [24] Komarek, J., Kastovsky, J., Mares, J., Johansen, J. R., 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295-335.
  • [25] Kotai, J., 1972. Introduction for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Insti. Water Res. Publ. B-11/69, Oslo, 5 pp.
  • [26] Krienitz, L., Ballot, A., Kotut, K., Wiegand, C., Pütz, S., Metcalf, J. S., Codd, G. A., Pflugmacher, S., 2003. Contribution of hot spring cyanobacteria to the mysterious deaths of lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol. Ecol. 43 (2), 141-148, http://dx.doi.org/10.1111/j.1574-6941.2003.tb01053.x.
  • [27] Kwan, C. J., Taori, K., Paul, J. V., Luesch, H., 2009. Lyngbyastatins 8-10, elastase inhibitors with cyclic depsipeptide scaffolds isolated from the marine cyanobacterium Lyngbya semiplena. Mar. Drugs 7, 528-538, http://dx.doi.org/10.3390/md7040528.
  • [28] Lightner, D. V., 1978. Possible toxic effects of the marine blue-green alga, Spirulina subsalsa, on the blue shrimp, Penaeus stylirostris. J. Invertebr. Pathol. 32 (2), 139-150, http://dx.doi.org/10.1016/0022-2011(78)90023-X.
  • [29] Linington, R. G., Edwards, D. J., Shuman, C. F., McPhail, K. L., Matainaho, T., Gerwick, W. H., 2008. Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine Cyanobacterium Symploca sp. J. Nat. Prod. 71 (1), 22-27, http://dx.doi.org/10.1021/np070280x.
  • [30] Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L., Corbett, T. H., 2001a. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod. 64 (7), 907-910, http://dx.doi.org/10.1021/np010049y.
  • [31] Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J., Corbett, T. H., 2001b. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 123 (23), 5418-5423, http://dx.doi.org/10.1021/ja010453j.
  • [32] Matthew, S., Ross, C., Rocca, J. R., Paul, V. J., Luesch, H., 2007. Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod. 70, 124-127, http://dx.doi.org/10.1021/np060471k.
  • [33] Matthew, S., Ross, C., Paul, V. J., Luesch, H., 2008. Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron Lett. (64), 4081-4089, http://dx.doi.org/10.1016/j.tet.2008.02.035.
  • [34] Matthew, S., Paul, V. J., Luesch, H., 2009. Tiglicamides A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry (70), 2058-2063, http://dx.doi.org/10.1016/j.phytochem.2009.09.010.
  • [35] Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D'souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G., 2015. Baltic cyanobacteria — a source of biologically active compounds. Eur. J. Phycol. 50 (3), 343-360, http://dx.doi.org/10.1080/09670262.2015.1062563.
  • [36] Nogle, L. M., Gerwick, W. H., 2002. Somocystinamide A, a novel cytotoxic disulfide dimer from a Fijian marine cyanobacterial mixed assemblage. Org. Lett. 4 (7), 1095-1098, http://dx.doi.org/10.1021/ol017275j.
  • [37] Ocampo Bennet, X., 2007. Peptide au seiner Cyanobakterien Wasserblütte (1998) aus dem Wannsee/Berli: Strukturen and biologische Wirksamkeit. Univ. Freiburg, Freiburg, 28 pp.
  • [38] Oftedal, L., Selheim, F., Wahlsten, M., Sivonen, K., Døskeland, S. O., Herfindal, L., 2010. Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar. Drugs 8 (10), 2659-2672, http://dx.doi.org/10.3390/md8102659.
  • [39] Patel, S., 2017. A critical review on serine protease: key immune manipulator and pathology mediator. Allergol. Immunopathol. 45 (1), 1-13, http://dx.doi.org/10.1016/j.aller.2016.10.011.
  • [40] Peng, Y., Liu, L., Jiang, L., Xiao, L., 2017. The roles of cyanobacterial bloom in nitrogen removal. Sci. Total Environ. 609, 297-303, http://dx.doi.org/10.1016/j.scitotenv.2017.03.149.
  • [41] Pereira, A., Cao, Z., Murray, T. F., Gerwick, W. H., 2009. Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two Papua new Guinea cyanobacteria. Chem. Biol. 16 (8), 893-906, http://dx.doi.org/10.1016/j.chembiol.2009.06.012.
  • [42] Pereira, A. R., Kale, A. J., Fenley, A. T., Byrum, T., Debonsi, H. M., Gilson, M. K., Valeriote, F. A., Moore, B. S., Gerwick, W. H., 2012. The Carmaphycins: new proteasome inhibitors exhibiting an a,bepoxyketone warhead from a marine cyanobacterium. Chembiochem 13 (6), 810-817, http://dx.doi.org/10.1002/cbic.201200007.
  • [43] Plaza, A., Bewley, C. A., 2006. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J. Org. Chem. 71, 6898-6907, http://dx.doi.org/10.1021/jo061044e.
  • [44] Pluotno, A., Carmeli, S., 2005. Banyasin A and banyasides A and B, three novel modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron 61, 575-583, http://dx.doi.org/10.1002/chin.200517196.
  • [45] Rastogi, R. P., Sinha, R. P., 2009. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27 (4), 521-539, http://dx.doi.org/10.1016/j.biotechadv.2009.04.009.
  • [46] Rubio, B. K., Parish, S. M., Yoshida, W., Schupp, P. J., Schils, T., Williams, P. G., 2010. Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett. 51 (51), 6718-6721, http://dx.doi.org/10.1016/j.tetlet.2010.10.062.
  • [47] Sapio, M. R., Fricker, L. D., 2014. Carboxypeptidases in disease: insights from peptidomic studies. Proteom. Clin. Appl. 8 (5-6), 327-337, http://dx.doi.org/10.1002/prca.201300090.
  • [48] Shrivastav, A., Mishra, S. K., Mishra, S., 2010. Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int. J. Biol. Macromol. 46 (2), 255-260, http://dx.doi.org/10.1016/j.ijbiomac.2010.01.001.
  • [49] Singh, R. K., Tiwari, S. P., Rai, A. K., Mohapatra, T. M., 2011. Cyanobacteria: an emerging source for drug discovery. J. Antibiot. 64 (6), 401-412, http://dx.doi.org/10.1038/ja.2011.21.
  • [50] Spirulina subsalsa Oersted ex Gomont: Algaebase. http://www.algaebase.org/search/species/detail/?species_id=23781 (retrieved 13.04.17).
  • [51] Spoof, L., Błaszczyk, A., Meriluoto, J., Cegłowska, M., Mazur-Marzec, H., 2015. Structures and activity of new anabaenopeptins produced by Baltic Sea cyanobacteria. Mar. Drugs 14 (1), 8 pp., http://dx.doi.org/10.3390/md14010008.
  • [52] Stewart, J. B., Bornemann, V., Chen, J. L., Moore, R. E., Caplan, F. R., Karuso, H., Larsen, L. K., Patterson, G. M., 1988. Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae. J. Antibiot. 41 (8), 1048-1056, http://dx.doi.org/10.7164/antibiotics.41.1048.
  • [53] Stizenberger, E., 1852. Spirulina und Arthrospira (nov. gen.). Hedwigia 1, 32-34.
  • [53] Šulčius, S., Montvydienė, D., Mazur-Marzec, H., Kasperovičienė, J., Rulevičius, R., Cibulskaitė, Ž., 2017. The profound effect of harmful cyanobacterial blooms: from food-web and management perspectives. Sci. Total Environ. 609, 1443-1450, http://dx.doi.org/10.1016/j.scitotenv.2017.07.253.
  • [54] Taori, K., Matthew, S., Rocca, J. R., Paul, V. J., Luesch, H., 2007. Lyngbyastatins 5-7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya spp. J. Nat. Prod. 70 (10), 1593-1600, http://dx.doi.org/10.1021/np0702436.
  • [55] Taori, K., Paul, V. J., Luesch, H., 2008. Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium Lyngbya sp. J. Nat. Prod. 71, 1625-1629, http://dx.doi.org/10.1021/np8002172.
  • [56] Teruya, T., Sasaki, H., Fukazawa, H., Suenaga, K., 2009. Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org. Lett. 11 (21), 5062-5065, http://dx.doi.org/10.1021/ol9020546.
  • [57] Titilade, P. R., Olalekan, E. I., 2015. The importance of marine genomics to life. J. Ocean Res. 3 (1), 1-13, http://dx.doi.org/10.12691/jor-3-1-1.
  • [58] Tomaselli, L., Palandri, M. R., Tredici, M. R., 1996. On the correct use of the Spirulina designation. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes 539-548.
  • [59] Tripathi, A., Fang, W., Leong, D. T., Tan, L. T., 2012. Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscula. Mar. Drugs 10 (5), 1126-1137, http://dx.doi.org/10.3390/md10051126.
  • [60] Turpin, P. J. F., 1827. Spirulina oscillarioide. Dictionnaire Des Sciencesnaturelles 50, 309-310.
  • [61] Vonshak, A., Tomaselli, L., 2000. Arthrospira (Spirulina): systematics and ecophysioIogy. In: Whitton, B.A., Potts, M. (Eds.), The Ecology of Cyanobacteria. Springer, Netherlands, 505-522, http://dx.doi.org/10.1007/0-306-46855-7_18.
  • [62] Wipf, P., Reeves, J. T., Day, B. W., 2004. Chemistry and biology of curacin A. Curr. Pharm. Des. 10 (12), 1417-1437, http://dx.doi.org/10.2174/1381612043384853.
  • [63] Witkowski, A., 1993. Microphytobenthos. In: Korzeniowski, K. (Ed.), Puck Bay. Inst. Oceanogr. Univ. Gdańsk., Gdańsk, 395-415.
  • [64] Włodarska-Kowalczuk, M., Balazy, P., Kobos, J., Wiktor, J., Zajączkowski,
  • M., Moskal, W., 2014. Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont) in the shallow sublitoral of the southern Baltic. Oceanologia 56 (3), 661-666, http://dx.doi.org/10.5697/oc.55-3.661.
  • [65] Yu, S., Kim, T., Yoo, K. H., Kang, K., 2017. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal a subtype of breast cancer. Biochem. Biophys. Res. Commun. 486 (3), 752-758, http://dx.doi.org/10.1016/j.bbrc.2017.03.114.
  • [66] Zhang, Y., Sun, H., Zhu, H., Ruan, Y., Liu, F., Liu, X., 2014. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, Spirulina subsalsa and Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 104, 136-142, http://dx.doi.org/10.1016/j.ecoenv.2014.02.027.
  • [67] Zhihui, S., Guolan, H., 2000. Toxicity of triphenyltin to Spirulina subsalsa. Bull. Environ. Contam. Toxicol. 64 (5), 23-728, http://dx.doi.org/10.1007/s001280000063.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd721636-40a8-4b41-9cd4-18f85af27528
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.