Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Prediction of the pressure distribution on a planing craft in waves deeply affects its structural design and safe operation. In this paper, the possibility of pressure prediction for the planing craft in waves is studied. A combined method is formulated by which craft motions in waves are computed using a 2.5D method, and the impact pressure is anticipated by the equivalent wedge method. Experiments are conducted to record the vertical acceleration and pressure time trends on a model. Comparing the results of the combined method with the experiments indicates that this approach successfully predicts the heave and pitch motions and the time evolution of the acceleration and pressure. The method presents good estimations for the peaks of the acceleration and pressure. Using the combined method, a parametric study on maximum peak acceleration and pressure is also conducted for various forward velocities and wave heights. It has been shown that the combined method is a fast and reliable tool for maximum peak pressure prediction. The method may be employed for structural design and optimization.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
4--15
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Amirkabir University of Technology, Hafez, 15875-4413 Tehran, Iran
autor
- Amirkabir University of Technology, Hafez, 15875-4413 Tehran, Iran
Bibliografia
- 1. Fridsma G. (1969): A systematic study of the rough-water performance of planing boats. Stevens Inst of Tech, Hoboken, NJ, Davidson Lab.
- 2. Savitsky D., Brown P. W. (1976): Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technology, 13(4), 381-400.
- 3. Martin M. (1976): Theoretical Prediction of Motions of HighSpeed Planing Boats in Waves. Journal of Ship Research, 22(3), 98.
- 4. Zarnick E. E. (1978): A nonlinear mathematical model of motions of a planing boat in regular waves. David W Taylor Naval Ship Research and Development Center, Bethesda, MD.
- 5. Hicks J. D., Troesch A. W., Jiang C. (1995): Simulation and nonlinear dynamics analysis of planing hulls. Journal of Offshore Mechanics and Arctic Engineering, 17(1), 38-45.
- 6. Akers R. H. (1999): Dynamic analysis of planing hulls in the vertical plane. Proceedings of the Society of Naval Architects and Marine Engineers, New England Section.
- 7. Van Deyzen A. (2008): A nonlinear mathematical model of motions of a planing monohull in head seas. In Proceedings of the 6th International Conference on High Performance Marine Vehicles (HIPER’08).
- 8. Sayeed T. M. (2010): Numerical simulation of planing hull in regular waves. Memorial University of Newfoundland.
- 9. Ruscelli D. (2009): Dynamics of high-speed craft. PhD Thesis, University of Genoa, Genoa.
- 10. Pennino S. (2014): Vertical Motion Assessment for Planing Hulls. PhD Thesis, University of Naples Federico II, Naples, Italy.
- 11. Von Karman T. (1929): The impact on seaplane floats during landing. National Advisory Committee on Aeuronautics, Washington, DC.
- 12. Wagner H. (1932): Über Stoß‐und Gleitvorgänge an der Oberfläche von Flüssigkeiten. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 12(4), 193-215.
- 13. Howison S., Ockendon J., Wilson S. (1991): Incompressible water-entry problems at small deadrise angles. Journal of Fluid Mechanics, 222, 215-230.
- 14. Oliver J. M. (2002): Water entry and related problems. PhD Thesis, University of Oxford.
- 15. Smiley R. F. (1951): A Semiempirical Procedure for Computing the Water-Pressure Distribution on Flat and V-Bottom Prismatic Surfaces During Impact or Planing. National Advisory Committee for Aeronautics, Washington, DC.
- 16. Smiley R. F. (1952): Water-pressure distribution during landings of a prismatic model having an angle of dead rise of 22 1/2 degrees and beam-loading coefficients of 0.48 and 0.97. National Advisory Committee for Aeronautics, Washington, DC.
- 17. Gray H. P., Allen R. G., Jones R. R. (1972): Prediction of Three-Dimensional Pressure Distributions of V-Shaped Prismatic Wedges during Impact or Planing. David W Taylor Naval Ship Research and Development Center, Bethesda, MD.
- 18. Rosén A., Garme K. (2004): Model experiment addressing the impact pressure distribution on planing craft in waves. International Journal of Small Craft Technology, 146.
- 19. Rosén A. (2005): Impact pressure distribution reconstruction from discrete point measurements. International Shipbuilding Progress, 52(1), 91-107.
- 20. Camilleri J., Taunton D., Temarel P. (2018): Full-scale measurements of slamming loads and responses on high-speed planing craft in waves. Journal of Fluids and Structures, 81, 201-229.
- 21. Razola M., Rosén A., Garme K. (2014): Allen and Jones revisited. Ocean Engineering, 89, 119-133.
- 22. Allen R. G., Jones R. R., Taylor D. W. (1978): A simplified method for determining structural design-limit pressures on high performance marine vehicles. In Advanced Marine Vehicles Conference.
- 23. Ghadimi P., Tavakoli S., Dashtimanesh A. (2016): Calm water performance of hard-chine vessels in semi-planing and planing regimes. Polish Maritime Research, 23(4), 23-45.
- 24. Ghassemi H., Kamarlouei M., Veysi S. T. G. (2015): A hydrodynamic methodology and CFD analysis for performance prediction of stepped planing hulls. Polish Maritime Research, 22(2), 23-31.
- 25. Jones R. R., Allen R. G. (1972): A Semiempirical Computerized Method for Predicting Three-Dimensional Hull-Water Impact Pressure Distributions and Forces on High-Performance Hulls. David W Taylor Naval Ship Research and Development Center, Bethesda, MD.
- 26. Shuford Jr C. L. (1958): A theoretical and experimental study of planing surfaces including effects of cross section and plan form. National Advisory Committee for Aeronautics, Washington, DC.
- 27. ITTC Member Organisations. Available from: https://ittc.info/members/member-organisations/ national-iranian-marine-laboratory-nimala/.
- 28. Yang S.-I., et al. (1996): The Prediction of Resistance of a 23m Class Planing Hull. Journal of Hydrospace Technology, 2(2), 68-79.
- 29. Zeraatgar H., et al. (2019): Sampling rate effect on wedge pressure record in water entry by experiment. Ocean Engineering, 179, 51-58.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa55e515-ce85-4a17-ae89-e61d2970197d