PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of material composition on bending analysis of FG plates via a two-variable refined hyperbolic theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The major novelty of the article is an application of a two-variable refined hyperbolic shear deformation theory based on studying the bending behavior of functionally graded material (FGM) plates with simply-supported edges. The influence of variating material characteristics and volume fraction of the constituent on bending behavior of the FG plate is examined. The advantage of this theory over other contributions is that a number of functional variables is reduced. All presented problems that have been solved previously, but have not studied the effect on changing plate characteristics, material composition are reinvented.
Rocznik
Strony
107--129
Opis fizyczny
Bibliogr. 36 poz., rys. kolor.
Twórcy
autor
  • Department of Civil Engineering University of Bechar Bechar 08000, Algeria
  • Laboratory of Materials and Hydrology (LMH) University of Sidi Bel Abbes Sidi Bel Abbes 2200, Algeria
  • Department of Mathematics Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics Faculty of Science Kafrelsheikh University Kafrelsheikh 33516, Egypt
  • zenkour@sci.kfs.edu.eg
autor
  • Mechanics Laboratory of Lille CNRS UMR 8107, University of Lille 1 59655 Villeneuve d’Ascq, France
Bibliografia
  • 1. Z.-H. Jin, G.H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, International Journal of Fracture, 107, 73–98, 2001.
  • 2. Y.Y. Yung, D. Munz, Stress analysis in a two materials joint with a functionally graded material. Functional graded materials, Proceedings of the 4th International Symposium on Functionally Graded Materials, Tsukuba, Japan, 41–46, 1996.
  • 3. Z.-H. Jin, R.C Batra, Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock, Journal of Thermal Stresses, 19, 317–339, 1996.
  • 4. Y.-L. Chung, S.H. Chi, The residual stress of functionally graded materials, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 13, 1–9, 2001.
  • 5. M. Bouazza, A. Tounsi, E.A Adda-Bedia, A. Megueni, Stability analysis of functionally graded plates subject to thermal loads, Shell-like Structures-Advanced Structured Materials, 15, 669–680, 2011.
  • 6. A.M. Zenkour, Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory, Journal of Sandwich Structures & Materials, 15, 6, 629–656, 2013.
  • 7. A.M. Zenkour, A simple four-unknown refined theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, 37, 20-21, 9041–9051, 2013.
  • 8. A.M. Zenkour, Bending of FGM plates by a simplified four-unknown shear and normal deformations theory, International Journal of Applied Mechanics, 5, 2, 1350020–1350035, 2013.
  • 9. S.H. Chi, Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load–Part I: Analysis, International Journal of Solids and Structures, 43, 3657–3674, 2006.
  • 10. S.H. Chi, Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load – Part II: Numerical results, International Journal of Solids and Structures, 43, 3675–3691, 2006.
  • 11. F. Mizuguchi, H. Ohnabe, Large deflections of heated functionally graded simply supported rectangular plates with varying rigidity in thickness direction, Proceedings of the 11th Technical Conference of the American Society for Composites, 957–966, 1996.
  • 12. M. Bouazza, A. Tounsi, E.A. Adda-Bedia, A. Megueni, Thermoelastic stability analysis of functionally graded plates: an analytical approach, Computational Materials Science, 49, 865–870, 2010.
  • 13. M. Bouazza, A. Tounsi, E.A. Adda-Bedia, A. Megueni, Thermal buckling of simply supported FGM square plates, Applied Mechanics and Materials, 61, 25–32, 2011.
  • 14. G.N. Praveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates, International Journal of Solids and Structures, 35, 4457–4476,1998.
  • 15. S. Pitakthapanaphong, E.P. Busso, Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients, Journal of Mechanics and Physics of Solids, 50, 695–716, 2002.
  • 16. M. Kashtalyan, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, European Journal of Mechanics - A/Solids, 23, 853–864, 2004.
  • 17. M. Kashtalyan, M. Menshykova, Three-dimensional elasticity solution for sandwich panels with a functionally graded core, Composite Structures, 87, 36–43, 2008.
  • 18. A.M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, 30, 67–84, 2006.
  • 19. A.M. Zenkour, Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate, Archive of Applied Mechanics, 77, 197–214, 2007.
  • 20. A.M. Zenkour, Simplified theory for hygrothermal response of angle-ply composite plates, AIAA Journal, 52, 1466–1473, 2014.
  • 21. R.C. Batra, J. Jin, Natural frequencies of a functionally graded anisotropic rectangular plate, Journal of Sound and Vibration, 282, 509–516, 2005.
  • 22. L.F. Qian, R.C. Batra, L.M. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method, Composites B, 35, 685–697, 2004.
  • 23. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 571–574, 1973.
  • 24. F. Ramirez, P.R. Heyliger, E. Pan, Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Composites B, 37, 10–20, 2006.
  • 25. R.P. Shimpi, Refined plate theory and its variants, AIAA Journal, 40, 137–146, 2002.
  • 26. R.P. Shimpi, H.G. Patel, A two variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures, 43, 6783–6799,2006.
  • 27. R.P. Shimpi, H.G. Patel, Free vibrations of plate using two variable refined plate theory, Journal of Sound Vibration, 296, 979–999, 2006.
  • 28. A.H. Sofiyev, A. Deniz, I.H. Akçay, E. Yusufoˇgçlu, The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load, Acta Mechanica, 183, 129–144, 2006.
  • 29. A.Y.T. Leung, An unconstrained third-order plate theory, Computers and Structures, 40, 871–875, 1991.
  • 30. C.P. Wu, H.Y. Li, An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates, Composite Structures, 92, 2591–605, 2010.
  • 31. C.P. Wu, K.H. Chiu, Y.M. Wang, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Composite Structures, 93, 923–943, 2011.
  • 32. J.L. Mantari, A.S. Oktem, C. Guedes Soares, Bending response of functionally graded plates by using a new higher order shear deformation theory, Composite Structures, 94, 714–723, 2012.
  • 33. J.N. Reddy, Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering, 47, 663–684, 2000.
  • 34. H. Nguyen-Xuan, L.V. Tran, T. Nguyen-Thoi, H.C. Vu-Do, Analysis of functionally graded plates using an edge-based smoothed finite element method, Composite Structures, 93, 3019–3039, 2011.
  • 35. K.P. Soldatos, A general laminated plate theory accounting for continuity of displacements and transverse shear stresses at material interfaces, Composite Structures, 20, 195–211, 1992.
  • 36. A.S. Sayyad, Y.M. Ghual,Flexure of thick beams using new hyperbolic shear deformation theory, International Journal of Mechanics, 5, 3, 113–122, 2011.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ba2b0a4-0cce-417a-843b-9ad3c5498db9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.