PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluorki w środowisku wodnym – zagrożenia i metody usuwania

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Fluorine in the water environment - hazards and removal methods
Języki publikacji
PL
Abstrakty
PL
Występowanie fluorków (F-) w wodach naturalnych jest związane z ich obecnością w skorupie ziemskiej, jak również aktywnością przemysłową człowieka. O ile obecność jonów F- w wodzie do picia w ilości 0,5÷0,7 mg/l zabezpiecza przed próchnicą zębów, o tyle ich nadmiar jest uważany za poważny problem zdrowotny. Regularne spożywanie wysoce fluorowanej wody, zawierającej 1,5÷4 mg F/l, wywołuje wiele chorób związanych z tkanką kostną (fluoroza, artretyzm i osteoporoza), chorobę Alzheimera, utratę pamięci i inne neurologiczne dolegliwości. Według World Health Organization, a także polskich przepisów, maksymalne stężenie fluorków w wodzie do picia nie może przekraczać 1,5 mg/l, a rekomendowany jest zakres 0,5÷1 mg/l. Opracowano szereg metod usuwania fluorków, które można podzielić na trzy grupy procesów: koagulacja i wytrącanie, membranowe techniki separacji oraz adsorpcja/wymiana jonowa.
EN
High fluorine concentrations in aquatic environment, even above 30 mg/L, are often detected in many parts of the world. Due to fluorine effects on health, World Health Organization (WHO) as well as national health authorities have established its maximum permissible concentration in drinking water at the level of 1.5 mg/L. This review article aims to provide detail information on researchers’ efforts in the field of fluorides removal during potable water production. The contaminant elimination methods have been broadly divided in three sections, i.e. coagulation/precipitation, adsorption and membrane techniques. Both, precipitation with the use of calcium salts or coagulation with aluminum sulphate and ferric salts followed by sedimentation are used for fluorine removal. In electrocoagulation, a coagulant is generated in situ by means of oxidation of anode usually made of aluminum or iron. The removal of fluorides from water and wastewater can be performed with the use of many different types of adsorbents, which are either applied already at industrial scale or still tested in the laboratory or pilot scale. The adsorption on activated aluminum oxide is already a common technology of fluorine removal from water and wastewater, and it is also indicated as the one of the best available technique (BAT) in this field. However, the adsorbent price is relatively high, while its efficiency mostly depends on pH and co-ions presence. Recently, a lot of effort has been devoted to develop an effective method of aluminum oxide modification with the use of metals’ oxides impregnation, which reveal significant defluoridation efficiency. The applicability of carbon based sorbents is less efficient than of aluminum compounds, hence a number of studies on modification of carbon based materials towards defluoridation improvement are carried out. The special attention is dedicated to carbon nanotubes. Among many natural materials, which are usable to fluorine adsorption, many different types of clays and minerals have been tested. Biosorbents, especially modified chitosan, also offer promising results in fluorine removal process. Additionally, a group of waste materials, which contain metal oxides, have also been examined to fluorides concentration decrease in contaminated aqueous streams, and those can be considered as alternative cheap sorbents. Synthetic layered double hydroxides (LDHs), hydrocalcite like compounds and nanosorbents have also gained a lot of attention as potential fluorine adsorbent, as they reveal high affinity toward the contaminant. Among membrane techniques reverse osmosis, nanofiltration, ultrafiltration in integrated systems, electrodialysis and Donnan dialysis have been discussed. The most important benefits offered by membrane processes are very high removal efficiency (up to 98%), single stage treatment, simultaneous water disinfection and low requirement for additional chemicals. However, the removal of other anions present in treated water is a serious disadvantage of those techniques, as it results in the need of water remineralization to assure the proper quality of finally produced potable water. Additionally, membrane processes are quite expensive due to relatively high initial concentrated solution containing fluorine may become a significant problem.
Rocznik
Strony
113--141
Opis fizyczny
Bibliogr. 95 poz., 1 wykr.
Twórcy
autor
  • Polska Akademia Nauk, Instytut Podstaw Inżynierii Środowiska, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Instytut Inżynierii Wody i Ścieków, ul. S. Konarskiego 18, 44-100 Gliwice
Bibliografia
  • [1] Jadhav S.V., Bringas E., Yadav G.D., Rathod V.K., Ortiz I., Marathe K.V., Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal, J. Environ. Manage. 2015, 162, 306-325.
  • [2] Ndiaye P.I., Moulin P., Dominguez L., Millet J.C., Charbit F., Removal of fluoride from electronic industrial effluent by RO membrane separation, Desalination 2005, 173, 25-32.
  • [3] Edmunds W.M., Smedley P., Fluoride in natural waters, [In:] Essentials of Medical Geology: Impacts of the Natural Environment on Public Health, eds. O. Selinus, B. Alloway, J.A. Centeno, Academic Press, US, 2005, 301-329.
  • [4] Kołtuniewicz A.B., Drioli E., Membranes in Clean Technologies, Wiley-VchVerlag GmbH, Weinheim 2008.
  • [5] Ozsvath D., Fluoride and environmental health: a review, Rev. Environ. Sci. Biotechnol. 2009, 8, 59-79.
  • [6] Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi, Dz.U. 2017, poz. 2294.
  • [7] Dolar D., Košutic K., Vucic B., RO/NF treatment of wastewater from fertilizer factory - removal of fluoride and phosphate, Desalination 2011, 265, 237-241.
  • [8] Bhatnagar A., Kumara E., Sillanpaa M., Fluoride removal from water by adsorption - A review, Chem. Eng. J. 2011, 171, 811-840.
  • [9] Meenakshi A.M., Maheshwari R.C., Fluoride in drinking water and its removal, J. Hazard. Mater. 2006, 137, 456-463.
  • [10] Ayoob S., Gupta A.K., Bhat V.T., A conceptual overview on sustainable technologies for the defluoridation of drinking water, Crit. Rev. Environ. Sci. Technol. 2008, 38, 401-470.
  • [11] Kowal A.L., Świderska-Bróż M., Oczyszczanie wody, Wydawnictwo Naukowe PWN, Warszawa- Wrocław 1996.
  • [12] Waghmare S.S., Arfin T., Fluoride removal from water by various techniques: Review, IJISET 2015, 2, 560-571.
  • [13] dos Santos Bazanella G.C., da Silva G.F., Vieira A.M.S., Bergamasco V.R., Fluoride removal from water using combined Moringa oleifera/ultrafiltration process, Water Air Soil Pollut. 2012, 223, 6083-6093.
  • [14] Pulkka S., Martikainen M., Bhatnagar A., Sillanpää M., Electrochemical methods for the removal of anionic contaminants from water - A review, Sep. Purif. Technol. 2014, 132, 252-271.
  • [15] Emamjomeh M.M., Sivakumar M., Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, J. Environ. Manage. 2009, 90, 1663-1679.
  • [16] Khatibikamal V., Torabian A., Janpoor F., Hoshyaripour G., Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics, J. Hazard. Mater. 2010, 179, 276-280.
  • [17] Behbahani M., Alavi Moghaddam M.R., Arami M., Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology, Desalination 2011, 271, 209-218.
  • [18] Drouiche N., Aoudj S., Lounici H., Drouiche M., Ouslimane T., Ghaffour N., Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: an investigation of the effect of operational parameters, Procedia Eng. 2012, 33, 385-391.
  • [19] Ghosh D., Medhi C.R., Purkait M.K., Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections, Chemosphere 2008, 73, 1393-1400.
  • [20] Hu C.Y., Lo S.L., Kuan W.H., Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes, Water Res. 2003, 37, 4513-4523.
  • [21] Shen F., Chen X., Gao P., Chen G., Electrochemical removal of fluoride ions from industrial wastewater, Chem. Eng. Sci. 2003, 58, 987-993.
  • [22] Bennajah M., Maalmi M., Darmane Y., Touhami M.E., Defluoridation of drinking water by electrocoagulation/electroflotation - kinetic study, J. Urban Environ. Eng. 2010, 4, 1, 37-45.
  • [23] Cui H., Qian Y., An H., Sun C., Zhai J., Li Q., Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor, Water Res. 2012, 46, 3943-3950.
  • [24] Bodzek M., Konieczny K., Usuwanie zanieczyszczeń nieorganicznych ze środowiska wodnego metodami membranowymi, Wydawnictwo Seidel-Przywecki, Warszawa 2011.
  • [25] Bodzek M., Konieczny K., Removal of fluoride from aquatic environment, Desal. Wat. Treat. 2018, w druku.
  • [26] Diawara C.K., Diop S.N., Diallo M.A., Farcy M.A., Determination performance of nanofiltration (NF) and low pressure reverse osmosis (LPRM) membranes in the removal of fluorine and salinity from brakish drinking water, J. Wat. Res. Prot. 2011, 3, 912-917.
  • [27] Gedam V.V., Patil J.L., Kagne S., Sirsam R.S., Labhasetwar P., Performance evaluation of polyamide reverse osmosis membrane for removal of contaminants in ground water collected from Chandrapur district, J. Membr. Sci. Technol. 2012, 2, 3, 1-5.
  • [28] Schoeman J.J., Water defluoridation, water denitrification and water desalination in rural areas in South Africa, Proceedings of the third IASTED African Conference, Power and Energy System (AfricaPES 2010), Gaborone, Botswana, September 6-8, 2010, 244-247.
  • [29] Briao V.B., Magoga J., Hemkemeier M., Briao E.B., Girardelli L., Sbeghen L., Favaretto D.P.C., Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil, Desalination, 2014, 344, 402-411.
  • [30] Sehn P., Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland, Desalination 2008, 223, 73-84.
  • [31] Mohammad A.W., Teow Y.H., Ang W.L., Chung Y.T., Oatley-Radcliffe D.L., Hilal N., Nanofiltration membrane review: Recent advances and future prospects, Desalination 2015, 356, 226-254.
  • [32] Diawara C.K., Lo S.M., Rumeau M., Pontie M., Sarr O., A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water, J. Membr. Sci. 2003, 219, 103-111.
  • [33] Hu K., Dickson J.M., Nanofiltration membrane performance on fluoride removal from water, J. Membr. Sci. 2006, 279, 529-538.
  • [34] Tahaikt M., El Habbani R., Ait Haddou A., Achary I., Amor Z., Taky M., Alami A., Boughriba A., Hafsi M., Elmidaoui A., Fluoride removal from groundwater by nanofiltration, Desalination 2007, 212, 46-53.
  • [35] Diawara C.K., Paugam L., Pontie M., Schlumpf J.P., Jaouen P., Quemeneur F., Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes, Sep. Sci. Technol. 2005, 40, 3339-3347.
  • [36] Malaisamy R., Talla-Nwafo A., Jones K.L., Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions, Sep. Purif. Technol. 2011, 77, 367-374.
  • [37] Richards L.A., Richards B.S., Schafer A.I., Renewable energy powered membrane technology: salt and inorganic contaminant removal by nanofiltration/ reverse osmosis, J. Membr. Sci. 2011, 369, 188-195.
  • [38] Bejaoui I., Mnif A., Hamrouni B., Performance of reverse osmosis and nanofiltration in the removal of fluoride from model water and metal packaging industrial effluent, Sep. Sci. Technol. 2014, 49, 1135-1145.
  • [39] Shen J., Schafer A., Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review, Chemosphere 2014, 117, 679-691.
  • [40] Zhang G., Gao Y., Zhang Y., Gu P., Removal of fluoride from drinking water by a membrane coagulation reactor (MCR), Desalination 2005, 177, 143-155.
  • [41] Kowalchuk E., Selective fluoride removal by aluminum precipitation & membrane filtration, Master of Science Thesis in Civil Engineering, University of New Mexico Albuquerque, New Mexico 2011.
  • [42] Lu N.C., Liu J.C., Removal of phosphate and fluoride from wastewater by a hybrid precipitation- microfiltration process, Sep. Purif. Technol. 2010, 74, 329-335.
  • [43] Prochaska K., Bielska M., Dopierała K., Wybrane fizykochemiczne aspekty filtracji membranowej. Membrany Teoria i Praktyka, Z. III, Wykłady Monograficzne i Specjalistyczne, Toruń 2009, 80-108.
  • [44] Klimonda A., Grzegorzek M., Majewska-Nowak K., Removal of fluoride ions by ultrafiltration In the presence of cationic surfactants, Environ. Prot. Eng. 2017, 44, 5-13.
  • [45] Akanyeti I., Ferrari M.-C., Hybrid sorbent-ultrafiltration systems for fluoride removal from water, Sep. Sci. Technol. 2016, 51, 348-358.
  • [46] Kabay N., Arar O., Samatya S., Yuksel U., Yuksel M., Separation of fluoride from aqueous solution by electrodialysis: Effect of process parameters and other ionic species, J. Hazard. Mater. 2008, 153, 1-2, 107-113.
  • [47] Amor Z., Malki S., Taky M., Bariou B., Mameri N., Lrnidaoui A., Optimization of fluoride removal from brackish water by electrodialysis, Desalination 1998, 120, 263-271.
  • [48] Zeni M., Riveros R., Melo K., Primieri R., Lorenzini S., Study on fluoride reduction in artesian well - water electrodialysis process, Desalination 2005, 185, 241-244.
  • [49] Tahaikt M., Achary I., Menkouchi-Sahli M.A., Amor Z., Taky M., Alami A., Boughriba A., Hafsi M., Elmidaoui A., Defluoridation of Moroccan groundwater by electrodialysis: continuous operation, Desalination 2006, 189, 215-220.
  • [50] Sahli M.A., Annouar A., Tahaikt S., Mountadar M., Soufiane A., Elmidaoui A., Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis, Desalination 2007, 212, 37-45.
  • [51] Grzegorzek M., Majewska-Nowak K., Use of the electrodialysis process for fluoride ion and salt removal from multi-constituent aqueous solutions, Arch. Civil Eng. Environ. 2016, 4, 107-113.
  • [52] Majewska-Nowak K., Grzegorzek M., Kabsch-Korbutowicz M., Removal of fluoride ions by batch electrodialysis, Environ. Prot. Eng. 2015, 41, 67-81.
  • [53] Tor A., Removal of fluoride from water using anion-exchange membrane under Donnan dialysis condition, J. Hazard. Mater. 2007, 141, 814-818.
  • [54] Durmaz F., Kara H., Cengeloglu Y., Ersoz M., Fluoride removal by Donnan dialysis with anionexchange membranes, Desalination 2005, 177, 51-57.
  • [55] Boubakri A., Helali N., Tlili M., Amor M.B., Fluoride removal from diluted solutions by Donnan dialysis using full factorial design, Korean J. Chem. Eng. 2014, 31(3), 461-466.
  • [56] Alkan E., Kir E., Oksuz L., Plasma modification of the anion-exchange membrane and its influence on fluoride removal from water, Sep. Purif. Technol. 2008, 61, 455-460.
  • [57] Mohapatra M., Anand S., Mishra B.K., Giles D.E., Singh P., Review of fluoride removal from drinking water, J. Environ. Manage. 2009, 91, 67-77.
  • [58] Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne, red. J. Nawrocki, Wydawnictwo Naukowe PWN, Warszawa-Poznań 2010.
  • [59] Ku Y., Chiou H.-M., The adsorption of fluoride ion from aqueous solution byactivated alumina, Water Air Soil Pollut. 2002, 133, 349-361.
  • [60] Bahena J.L.R., Cabrera A.R., Valdivieso A.L., Urbina RH., Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina - aqueous electrolyte interface, Sep Sci. Technol. 2002, 37, 1973-1987.
  • [61] Valdivieso A.L., Reyes Bahena J.L., Song S., Herrera Urbina R., Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface, J. Colloid Inter. Sci. 2006, 298, 1-5.
  • [62] Wasay S.A., Tokunaga S., Park S.W., Removal of hazardous anions from aqueous solutions by La(III)- and Y(lll)-impregnated alumina, Sep. Sci. Technol. 1996, 31, 1501-1514.
  • [63] Maliyekkal S.M., Anshup K.R., Pradeep T.A., High yield combustion synthesis of nanomagnesia and its application for fluoride removal, Sci. Total Environ. 2010, 408, 2273-2282.
  • [64] Teng S.X., Wang S.G., Gong W.X., Liu X.W., Gao B.Y., Removal of fluoride by hydrous oxide-coated alumina: Performance and mechanism, J. Hazard. Mater. 2009, 168, 1004-1011.
  • [65] Bansiwal A., Pillewan P., Biniwale R.B., Rayalu S.S., Copper oxide incorporated mesoporous alumina for defluoridation of drinking water, Micro. Meso. Mater. 2010, 129, 54-61.
  • [66] Maliyekkal S.M., Shukla S., Philip L., Nambi I.M., Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules, Chem. Eng. J. 2008, 140, 183-192.
  • [67] Lv L., He J., Wei M., Evans D.G., Duan X., Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides, J. Hazard. Mater. 2006, 133, 119-128.
  • [68] Hamdi N., Srasra E., Removal of fluoride from acidic wastewater by clay mineral: Effect of solid-liquid ratios, Desalination 2007, 206, 238-244.
  • [69] Gogoi P.K., Baruah R., Fluoride removal from water by adsorption on acid activated kaolinite clay, Indian J. Chem. Technol. 2008, 15, 500-503.
  • [70] Kamble S.P., Dixit P., Rayalu S.S., Labhsetwar N.K., Defluoridation of drinking water using chemically modified bentonite clay, Desalination 2009, 249, 687-693.
  • [71] Karthikeyan G., Pius A., Alagumuthu G., Fluoride adsorption studies of montmorillonite clay, Indian J. Chem. Technol. 2005, 12, 263-272.
  • [72] Islam M., Patel R.K., Evaluation of removal efficiency of fluoride from aqueous solution using quick lime, J. Hazard. Mater. 2007, 143, 303-310.
  • [73] Turner B.D., Binning P., Stipp S.L.S., Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption, Environ. Sci. Technol. 2005, 39, 9561-9568.
  • [74] Das N., Pattanaik P., Das R., Defluoridation of drinking water using activated titanium rich bauxite, J. Colloid Inter. Sci. 2005, 292, 1-10.
  • [75] Onyango M.S., Kojima Y., Aoyi O., Bernardo E.C., Matsuda H., Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cationexchanged zeolite F-9, J. Colloid Inter. Sci. 2004, 279, 341-350.
  • [76] Onyango M.S., Leswifi T.Y., Ochieng A., Kuchar D., Otieno F.O., Matsuda H., Breakthrough analysis for water defluoridation using surface-tailored zeolite in a fixed bed column, Ind. Eng. Chem. Res. 2009, 48, 931-937.
  • [77] Sivasamy A., Singh K.P., Mohan D., Maruthamuthu M., Studies on defluoridation of water by coal-based sorbents, J. Chem. Technol. Biotechnol. 2001, 76, 717-722.
  • [78] Kaseva M.E., Optimization of regenerated bone char for fluoride removal in drinking water: A case study in Tanzania, J. Water Health 2006, 4, 139-147.
  • [79] Daifullah A.A.M., Yakout S.M., Elreefy S.A., Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater. 2007, 147, 633-643.
  • [80] Gupta V.K., Ali I., Saini V.K., Defluoridation of wastewaters using waste carbon slurry, Water Res. 2007, 41, 3307-3316.
  • [81] Ma Y., Wang S.G., Fan M., Gong W.X., Gao B.Y., Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides, J. Hazard. Mater. 2009, 168, 1140-1146.
  • [82] Karthikeyan M., Elango K.P., Removal of fluoride from aqueous solution using graphite: A kinetic and thermodynamic study, Indian J. Chem. Technol. 2008, 15, 525-532.
  • [83] Li Y.H., Wang S.G., Zhang X.F., Wei J.Q., Xu C.L., Luan Z.K., Wu D.H., Adsorption of fluoride from water by aligned carbon nanotubes, Mater. Res. Bull. 2003, 38, 469-476.
  • [84] Li Y.H., Wang S., Zhang X., Wei J., Xu C., Luan Z., Wu D., Wei B., Removal of fluoride from water by carbon nanotube supported alumina, Environ. Technol. 2003, 24, 391-398.
  • [85] Wang S.G., Ma Y., Shi Y.J., Gong W.X., Defluoridation performance and mechanism of nanoscale aluminum oxide hydroxide in aqueous solution, J. Chem. Technol. Biotechnol. 2009, 84 1043-1050.
  • [86] Patel G., Pal U., Menon S., Removal of fluoride from aqueous solution by CaO nanoparticles, Sep. Sci. Technol. 2009, 44, 2806-2826.
  • [87] Chang C.-F., Lin P.-H., Holl W., Aluminum-type superparamagnetic adsorbents: Synthesis and application on fluoride removal, Colloids Surf. A: Physicochem. Eng. Aspects 2006, 280, 194-202.
  • [88] Zhao X., Wang J., Wu F., Wang T., Cai Y., Shi Y., Jiang G., Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles, J. Hazard. Mater. 2010, 173, 102-109.
  • [89] Kumar E., Bhatnagar A., Kumar U., Sillanpaa M., Defluoridation from aqueous solutions by nano-alumina: Characterization and sorption studies, J. Hazard. Mater. 2011, 186, 1042-1049.
  • [90] Kamble S.P., Jagtap S., Labhsetwar N.K., Thakare D., Godfrey S., Devotta S., Rayalu S.S., Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan, Chem. Eng. J. 2007, 129, 173-180.
  • [91] Yao R., Meng F., Zhan L., Ma D., Wang M., Defluoridation of water using neodymiummodified chitosan, J. Hazard. Mater. 2009, 165, 454-460.
  • [92] Viswanathan N., Meenakshi S., Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads, J. Colloid Interface Sci. 2008, 322, 375-383.
  • [93] Viswanathan N., Meenakshi S., Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride, J. Hazard. Mater. 2009, 162, 920-930.
  • [94] Mohan S.V., Ramanaiah S.V., Rajkumar B., Sarma P.N., Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation, J. Hazard. Mater. 2007, 141, 465-474.
  • [95] Ramanaiah S.V., Mohan S.V., Sarma P.N., Adsorptive removal of fluoride from aqueous phase using waste fungus (Pleurotus ostreatus 1804) biosorbent: Kinetics evaluation, Ecol. Eng. 2007, 31, 47-56.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e12824b8-ebdc-4544-8121-d962152f6997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.