PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of two polymers PDO and PLLA/PCL in application of urological stent for the treatment of male urethral stenosis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of the conducted research was to develop an urological stent design for the treatment of male urethral stenosis. Given the variable loading conditions inside the urethra, the proposed stent should maintain normal tissue kinetics and obstruct the narrowed lumen. The suitable selection for the stent material significantly influences the regeneration and proper remodeling of the urethral tissues. Methods: In this work, the mechanical characteristics of some polymer materials were studied, including: polydioxanone (PDO) and poly(L-lactide) (PLLA)/polycaprolactone (PCL) composite. The obtained mechanical properties for static tensile testing of the materials, allowed the determination of such parameters as Young’s modulus (E), tensile strength (Rm) and yield strength (Re). Subsequently, the design of a urological stent was developed, for which a numerical analysis was carried out to check the behaviour of the stent during varying loads prevailing in the urethra. Result: The research indicated that PDO has better mechanical properties than the proposed PLLA/PCL composite. The numerical analysis results suggested that the developed stent design can be successfully used in the treatment of male urethral stenosis. The obtained stress and strain distributions in the numerical analysis confirm that the PDO material can be used as a material for an urological stent. Conclusions: The biodegradable polymers can be successfully used in urology. Their advantages over solid materials are their physicochemical properties, the ability to manipulate the rate and time of degradation and the easy availability of materials and manufacturing technology.
Słowa kluczowe
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Poland.
Bibliografia
  • [1] ABBAS T.O., YALCIN H.C., PENNISI C.P., From Acellular Matrices to Smart Polymers: Degradable Scaffolds that are Transforming the Shape of Urethral Tissue Engineering, Int. J. Mol. Sci., 2019, 20, 1763, DOI: 10.3390/ijms20071763.
  • [2] AN R., TANG W., ZHAO Z., LIU W., KAN L., Poly (lactide-coglycolide) microspheres with good biocompatibility, Acta Bioeng. Biomech., 2024, 25 (4), DOI: 10.37190/ABB-02359-2023-06.
  • [3] BISCAIA S., SILVA J.C., MOURA C., VIANA T., TOJEIRA A., MITCHELL G.R., PASCOAL-FARIA P., FERREIRA F.C., ALVES N., Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance, Polymers, 2022, 14 (9), DOI:10.3390/polym14091669.
  • [4] CAPUANA E., LOPRESTI F., CERAULO M., LA CARRUBBA V., Poly-L-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications, Polymers, 2022, 14 (6), DOI: 10.3390/polym14061153.
  • [5] CAVES J.M., CUI W., WEN J., KUMAR V.A., HALLER C.A., CHAIKOF E.L., Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair, Biomaterials, 2011, 32 (23), 5371–5379, DOI: 10.1016/j.biomaterials.2011.04.009.
  • [6] CORDEIRO R., HENRIQUES M., SILVA J.C., ANTUNES F., ALVES N., MOURA C., Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement, J. Funct. Biomater., 2022, 13 (2), DOI: 10.3390/jfb13020063.
  • [7] ENGEL O., SOAVE A., RINK M., FISCH M., Reconstructive Management with Urethroplasty, Eur. Urol. Suppl., 2016, 15 (1), 13–16, DOI: 10.1016/j.eursup.2015.10.004.
  • [8] FERNÁNDEZ J., ETXEBERRIA A., SARASUA J.R., Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers, J. Mech. Behav. Biomed. Mater., 2012, 9, DOI: 10.1016/j.jmbbm.2012.01.003.
  • [9] GOLAN O., SHALOM H., KAPLAN-ASHIRI I., COHEN S.R., FELDMAN Y., PINKAS I., ALMOG R.O., ZAK A., TENNE R., Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes, Polymers, 2021, 13 (21), DOI:10.3390/polym13213851.
  • [10] GONG H., CHEN Z., Adipose derived stem cells and ginkgo biloba extract-loaded PCL/gelatin nanofibrous scaffolds for peripheral nerve injury repair: The impact of physical activity, Acta Bioeng. Biomech., 2024, 25 (4), DOI: 10.37190/ABB-02323-2023-06.
  • [11] GOONOO N., BHAW-LUXIMON A., RODRIGUEZ I.A., BOWLIN G.L., JHURRY D., Poly(ester-ether)s: I. Investigation of the Properties of Blend Films of Polydioxanone and Poly(methyl dioxanone), Int. J. Polym. Mater. Polym. Biomater., 2014, 63 (10), DOI: 10.1080/00914037.2013.854224.
  • [12] HAMPSON L.A., MCANINCH J.W., BREYER B.N., Male urethral strictures and their management, Nat. Rev. Urol., 2014, 11 (1), 43–50, DOI: 10.1038/nrurol.2013.275.
  • [13] ISSACK F.H., HASSEN S.M., TEFERA A.T., TESHOME H., GEBRESELASSIE K.H., MUMMED F.O., Short-term recurrence rate of male urethral stricture and its predictors after treatment with optical internal urethrotomy: Prospective Cohort Study at a tertiary center in Ethiopia, Ann. Med. Surg. (Lond), 2023, 85 (10), 4715–4719, DOI: 10.1097/MS9.0000000000001253.
  • [14] KLEKIEL T., MACKIEWICZ A., KACZMAREK-PAWELSKA A., SKONIECZNA J., KUROWIAK J., PIASECKI T., NOSZCZYK-NOWAK A., BĘDZIŃSKI R., Novel design of sodium alginate based absorbable stent for the use in urethral stricture disease, J. Mater. Res. Technol., 2020, 9 (4), 9004–9015, DOI:10.1016/j.jmrt.2020.06.047.
  • [15] KUROWIAK J., KACZMAREK-PAWELSKA A., MACKIEWICZ A., BALDY-CHUDZIK K., MAZUREK-POPCZYK J., ZARĘBA Ł., KLEKIEL T., BĘDZIŃSKI R., Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Addition of Pygeum africanum with Potential Application in Urology, Int. J. Mol. Sci., 2022, 23 (18), DOI: 10.3390/ijms231810324.
  • [16] KUROWIAK J., MACKIEWICZ A., KLEKIEL T., BĘDZIŃSKI R., Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material – Mechanical Strength, μDIC Analysis and Degradation, Materials, 2022, 15 (3), DOI: 10.3390/ma15031225.
  • [17] KUROWIAK J., KLEKIEL T., BĘDZIŃSKI R., Biodegradable Polymers in Biomedical Applications: A Review – Developments, Perspectives and Future Challenges, Int. J. Mol. Sci., 2023, 24 (23), DOI: 10.3390/ijms242316952.
  • [18] KUROWIAK J., MACKIEWICZ A., KLEKIEL T., BĘDZIŃSKI R., Material Characteristic of an Innovative Stent for the treatment of Urethral Stenosis, Acta Mech. Autom., 2023, 17 (3), DOI: 10.2478/ama-2023-0055.
  • [19] LALLA M., GREGERSEN H., OLSEN L.H., JØRGENSEN T.M., In Vivo Biomechanical Assessment of Anterior Rabbit Urethra After Repair of Surgically Created Hypospadias, J. Urol., 2010, 184, 675–682, DOI: 10.1016/j.juro.2010.03.055.
  • [20] LEE K., GANG G.G., KANG Y.G., JUNG S.S., PARK H.G., JANG J.H., Alleviation of Osteoarthritis – Induced Pain and Motor Deficits in Rats by a Novel Device for the Intramuscular Insertion of Cog Polydioxanone Filament, Appl. Sci., 2021, 11 (22), DOI: 10.3390/app112210534.
  • [21] LIU J., FAN Z., LIU X., XU X., LIU M., YE X., DENG X., Effect of exercise rehabilitation on hemodynamic performance after carotid artery stenting: a numerical study, Acta Bioeng. Biomech., 2023, 25 (2), DOI: 10.37190/ABB-02268-2023-01.
  • [22] LOSKOT J., JEZBERA D., BEZROUK A., DOLEŽAL R., ANDRÝS R., FRANCOVÁ V., MIŠKÁŘ D., MYSLIVCOVÁ FUČÍKOVÁ A., Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation, Materials, 2021, 14 (8), DOI: 10.3390/ma14185462.
  • [23] MACKIEWICZ A.G., KLEKIEL T., KUROWIAK J., PIASECKI T., BĘDZIŃSKI R., Determination of Stent Load Conditions in New Zealand White Rabbit Urethra, J. Funct. Biomater., 2020, 11 (4), DOI: 10.3390/jfb11040070.
  • [24] MANGIR N., CHAPPLE C., Recent Advances in treatment of urethral stricture disease in men [version 1; peer review: 2 approved], F1000Research, 2020, 9, 330, DOI: 10.12688/f1000research.21957.1.
  • [25] PALMINTERI E., GACCI M., BERDONDINI E., POLUZZI M., FRANCO G., GENTILE V., Management of urethral stent failure for recurrent anterior urethral strictures, Eur. Urol., 2010, 57 (4), 615–621, DOI: 10.1016/j.eururo.2009.11.038.
  • [26] RUIZ-RAMÍREZ L.R., ÁLVAREZ-ORTEGA O., DONOHUE-CORNEJO A., ESPINOSA-CRISTÓBAL L.F., FARIAS-MANCILLA J.R., MARTÍNEZ-PÉREZ C.A., REYES-LÓPEZ S.Y., Poly-ε-Caprolactone- Hydroxyapatite – Alumina (PCL-HA-α-Al2O3) Electrospun Nanofibers in Wistar Rats, Polymers, 2022, 14 (11), DOI: 10.3390/polym14112130.
  • [27] SINGH M., JONNALAGADDA S., Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound- -healing applications. J. Mater. Sci.: Mater. Med., 2021, 32 (44), DOI: 10.1007/s10856-021-06509-7.
  • [28] SMAIDA R., FAVREAU H., NAJA M., HUA G., FIORETTI F., BENKIRANE-JESSEL N., SCIPIONI D., KUCHLER-BOPP S., Polycaprolactone Based Biomaterials and Sodium Hyaluronate Nanoreservoirs for Cartilage Regeneration. In Stem Cells and Regenerative Medicine, IOS Press, 2021, DOI: 10.3233/BHR210018.
  • [29] SMITH T.G., Current management of urethral stricture disease, Indian J. Urol., 2016, 32 (1), DOI: 10.4103/0970-1591.173108.
  • [30] BERG S., VILLEE M., Biology, Multico Publishing, 2000, ISBN: 83-7073-090-6.
  • [31] ZHOU S., YANG R., ZOU Q., ZHANG K., YIN T., ZHAO W., SHAPTER J.G., GAO G., FU Q., Fabrication of Tissue – Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full – Thickness Urethral Reconstruction,
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9afffa06-5f1d-464d-9ce9-c0563e48b916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.